

## NDIA Trusted Microelectronics Joint Working Group

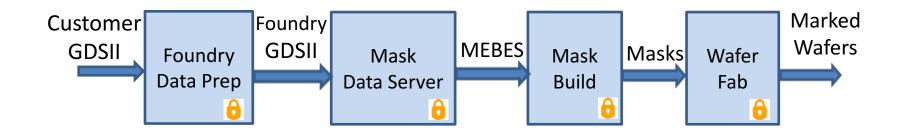
# Team 4 New Methods to Instill Trust in Semiconductor Fabrication Preliminary Report

Presented by
Dr. Pat Hays, The Boeing Company
at NDIA's 8<sup>th</sup>
Trusted Microelectronics Workshop
February 2, 2017

## **Team Members**



| Name                                      | Organization      | Split<br>Mask | Functional Disaggregation & Packaging | Equivalence<br>Checking | Fab Options | New Design<br>Approaches |
|-------------------------------------------|-------------------|---------------|---------------------------------------|-------------------------|-------------|--------------------------|
| John Robert Adams                         | The Aerospace     |               | Х                                     |                         | Х           |                          |
| Elizabeth Klein-Lebbink<br>Nick Sramek    | Corporation       |               |                                       |                         |             |                          |
| Todd Bauer                                | Sandia            | X (chair)     |                                       |                         |             | Х                        |
| Greg Creech                               | GLC Consulting    |               |                                       |                         |             | X (chair)                |
| Dave Davis                                | USAF SMC          |               |                                       | Х                       |             |                          |
| Brad Ferguson                             | Cypress           |               |                                       |                         |             |                          |
| Pat Hays                                  | Boeing            |               |                                       | X (chair)               |             |                          |
| Robert Irie, Rob Ciccariello              | MIBP              |               |                                       |                         |             | Х                        |
| Sean Johnson                              | Intelesys         |               |                                       | Х                       |             | Х                        |
| Scott Jordon                              | Jazz              | Х             | X (chair)                             |                         |             |                          |
| Steve McNeil                              | Xilinx            |               |                                       | Х                       |             |                          |
| Eric Miller                               | Boeing            |               | Х                                     |                         |             | Х                        |
| John Monk                                 | Northrop Grumman  | Х             |                                       |                         | X (chair)   |                          |
| Mike Newman                               | Aeroflex (Cobham) |               | X                                     |                         | X           |                          |
| Ken O'Neil, Paul Quintana                 | Microsemi         |               |                                       | X                       |             |                          |
| Mark Porter                               | General Dynamics  |               |                                       |                         |             |                          |
| Dan Radack                                | IDA               |               |                                       | X                       |             | X                        |
| Tim Scott                                 | Novati            |               | X                                     |                         | X           |                          |
| John Weaver                               | Tectonic Labs     |               |                                       |                         |             | Х                        |
| Ken Wetzel                                | SMI Inc.          |               | X                                     |                         | X           |                          |
| Ed Yarbrough, Gordy<br>Braun, Ken Heffner | Honeywell         |               |                                       |                         | Х           |                          |

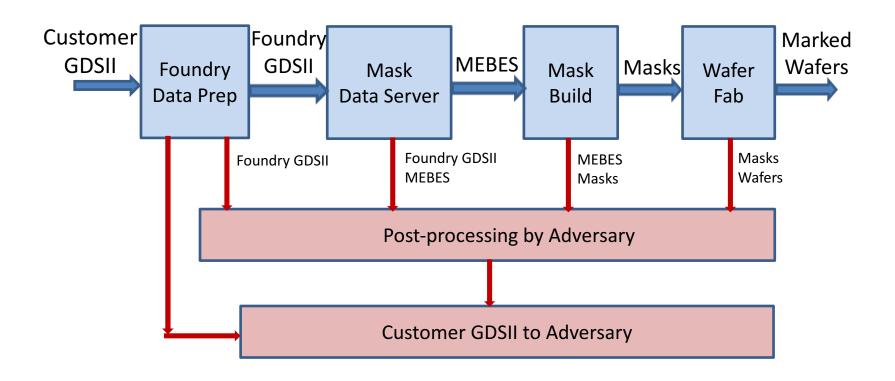




#### New Methods to Instill Trust in Semiconductor Fabrication

- The Problem: the Trusted Foundry Program Currently Does Not Support
  - Access to the most advanced process technologies
  - Access to off-shore foundries
- The Hypothesis: High-Tech Methods Can Instill Sufficient Trust to Enable Policy Changes That Will Solve the Above Problems and Further Improve Trust at Established Trusted Foundries
- The Methodology: Evaluate the Spectrum of Methods vs Pragmatic
   Criteria
- The Deliverables:
  - Present findings at GOMAC, March 20, 2017, Reno, NV
  - Recommendations Report, March 31, 2017

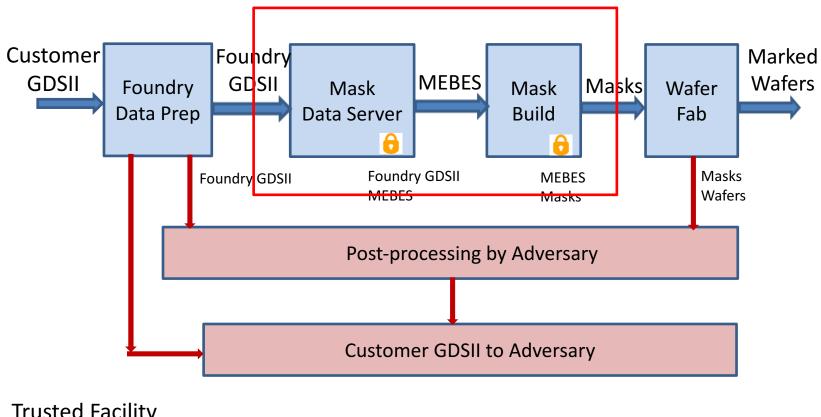



## Semiconductor Fab – The Trusted Flow








#### Semiconductor Fab – Vulnerabilities



## The Customer Design Can be Lost At Every Stage of the Fab Process



## Semiconductor Fab – Residual Vulnerabilities With Independent Trusted Mask Shop





A Couple Doors are Locked, Others are Still Open



## Reverse Engineering – Enabling DoD Losses

|   | Crotale R440                                                                                                                                                                                                               | Hainan Island Incident                                                                                                                                                             | Harpoon Missiles Sold to Pakistan                                                                                                                              |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | China developed the HQ-7 SAM system partly from reverse-engineering the Crotale in the early 1980s. Iran is believed to have developed their own variant, the Shahab Thaqeb in the early 2000s based upon the Chinese HQ-7 | <ul> <li>U.S. Navy EP-3E ARIES II is forced to land after mid-air collision with a Chinese J-8II interceptor fighter.</li> <li>Accusations of components 'gone missing'</li> </ul> | <ul> <li>U.S. accuses Pakistan of illegally modifying<br/>Harpoon anti-ship missiles</li> <li>Modification increased range and threatened<br/>India</li> </ul> |
|   |                                                                                                                                                                                                                            |                                                                                                                                                                                    |                                                                                                                                                                |

#### **Counterfeiting**

Reverse engineering to enable theft of system design and/or software

#### **Capability Losses**

Reverse engineering to learn capabilities, procedures, methods, equipment, intelligence and operational data

#### **Malicious Tampering**

Reverse engineering to enable modification of system or software for unauthorized usage



## New Methods Evaluated by Team 4

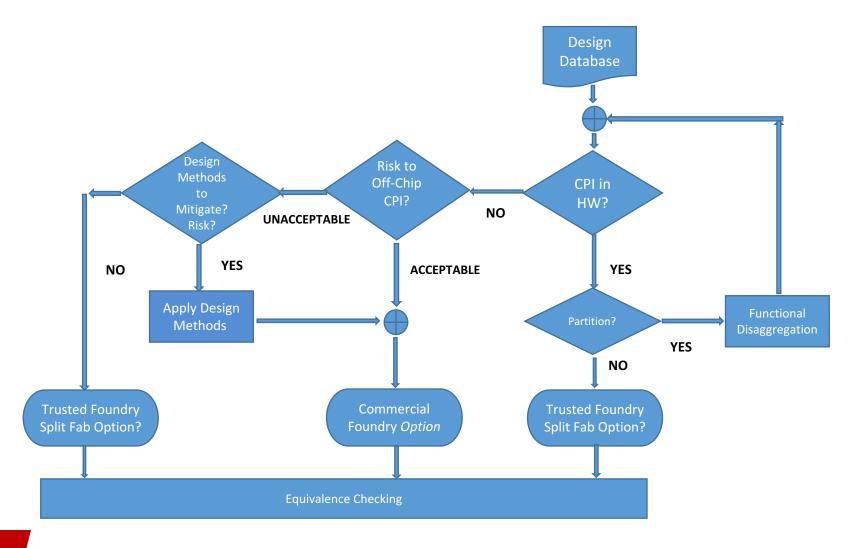
#### Functional Disaggregation

- Partition into 2 or more dice, delimiting Trusted Foundry requirement
- Subcommittee chair: Scott Jordan (Jazz)

### New Design Methods

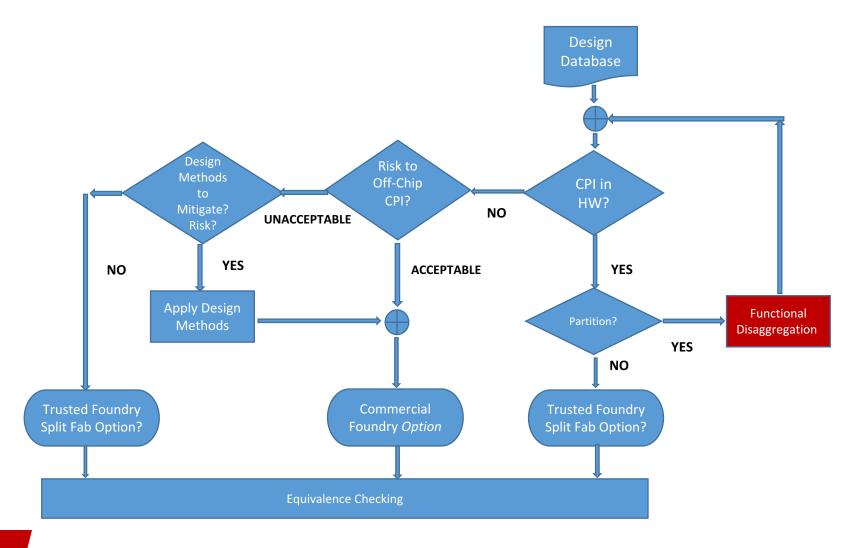
- Methods to prevent RE of design or RE of device functionality
- Subcommittee chair: Gregg Creech (Ohio State University)

#### Split Fab


- FEOL layers and BEOL layers fab'd at different foundries
- Subcommittee chair: Todd Bauer (Sandia)

#### Equivalence Checking

- Compare artifacts against customer intent
- Subcommittee chair: Pat Hays (Boeing)




## New Methods to Instill Trust – One Size Does Not Fit All

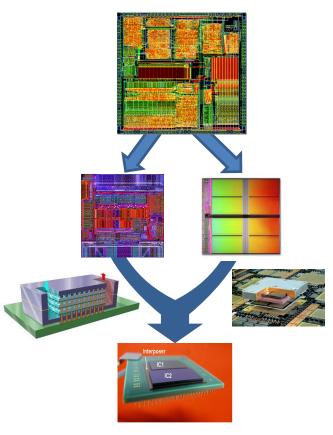




## New Methods to Instill Trust – Functional Disaggregation (1/3)






## New Methods - Functional Disaggregation (FD) (2/3)

#### Introduction

- An otherwise monolithic integrated circuit solution is partitioned between two or more separate elements
  - IC's within the same reticle
  - Multiple technologies and fabs
- Reassembled using connectivity fabrics such as: circuit-level,
   2.5/3D integration, heterogeneous integration, advanced multichip modules, package stacking or board-level integration

#### Potential Benefits

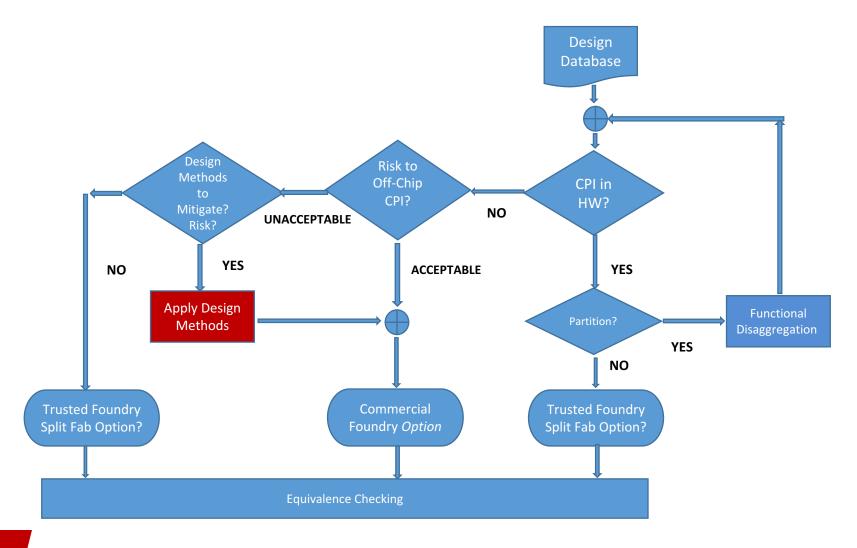
- Option A) Eliminate need for non-Trusted node
  - Achieve high level of integration without resorting to non-Trusted advanced nodes
- Option B) Partition into Trusted IC(s) and non-Trusted IC(s)
  - Most sensitive CPI is fab'd in Trusted node
  - Advanced PPA requirements in non-Trusted node
- Option C) Enable use of all non-Trusted nodes
  - Disaggregate circuit blocks to obfuscate functionality





## New Methods - Functional Disaggregation (3/3)

### Challenges


- Incremental IC and module development cost
- Interfaces may degrade performance and security
  - Exposes interfaces among dice which must be protected from passive and active monitoring attacks. Strategy: use cryptographically secure interfaces and/or sensors
- Option A All ICs Trusted
  - Will not be feasible for the most advanced PPA requirements (i.e. designs requiring highest performance and/or lowest power and/or smallest area/footprint)
- Option B and C (additional challenges) Some ICs non-Trusted
  - Non-Trusted IC is vulnerable to Trojans/malware. Strategy: wrap & monitor

#### Recommendation

- Subject to the above challenges, FD is expected to have merit for many developments
- The DARPA MTO office is currently funding two programs (CHIPS and SPADE) that involve functional disaggregation. Track their findings
- Success will be design dependent. Need to develop guidelines for successful application and review



## New Methods to Instill Trust – Design (1/3)





## New Methods - Design (2/3)

#### Introduction

- IC design techniques, which have emerged (or will soon emerge)
   from research. Several examples:
  - Circuit Obfuscation/Camouflage modification of an IC design to hide or obscure the functional intent
  - Physical Unclonable Function (PUF) a circuit which creates
    a deterministic, but process-dependent number; the number
    can be used as a root-of-trust in cryptographic key formation
  - Process Specific Function (PSF) a circuit used to create a chip-unique signature in the EM spectrum

#### Potential Benefit

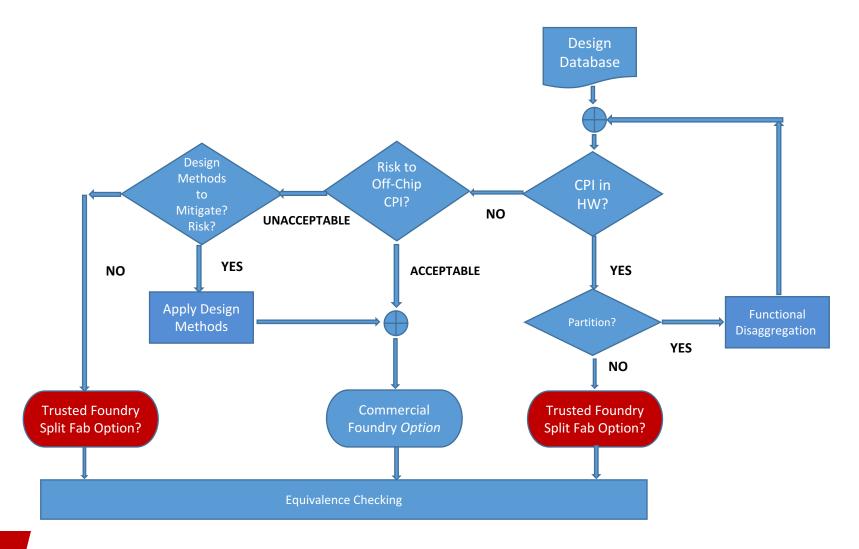
- Obfuscation penalize adversary by increasing RE time
- PUF prevent adversary from learning the device operation even after the device RE has been successfully RE'd
- PSF detection of malicious insertions





## New Methods - Design (3/3)

#### Challenges


- Obfuscation resists limited, but not advanced, RE attack
- PUF
  - The PUF number must achieve sufficient inter-chip randomness
  - The trick is to derive a stable PUF number from the process-dependent entropy source.
     The PUF number must be stable across temperature, voltage, noise, semiconductor ageing
  - Licensable PUFs (Intrinsic-ID, Verayo) have been applied in high volume. MicroSemi's SmartFusion2 and the latest Altera & Xilinx FPGAs integrate PUFs (Intrinsic-ID)
- PSF not ready for prime time (Signal/noise ratio? Detection of any mod vs some mods?)

#### Recommendation

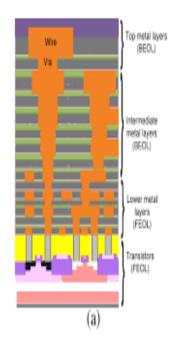
- PUFs are practical now
- The Trust community is not sufficiently familiar with the benefits of PUFs to protect semiconductors. Recommend that guidelines and training be funded within the Trust community.



## New Methods to Instill Trust – Split Fab (1/3)






## New Methods – Split Fab (2/3)

#### Introduction

- Front End of Line (FEOL) processing and Back End of Line (BEOL) processing at two different fabs
- Currently the subject of the IARPA Trusted Integrated Chips (TIC) program

#### Potential Benefit

- A) Both fabs are DMEA-certified Trusted Foundries
  - Can enable technical innovation. New combinations of processes, devices, materials
  - Examples: integration of Jazz SiGe FEOL with Novati's copper BEOL; introduction of aluminum nitride to build resonators, filters and transducers; RRAM integration
- B) The FEOL fab is not a Trusted Foundry
  - Open trusted access to advanced process nodes because the BEOL layers and design intent is not shared with the non-Trusted FEOL fab

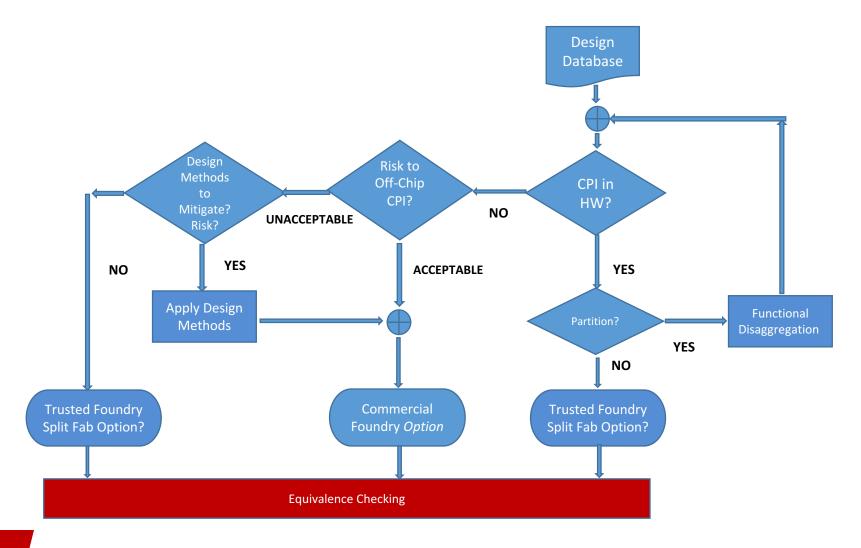


| Layer | Pitch (nm) |  |  |
|-------|------------|--|--|
| M10   | 1600       |  |  |
| M9    | 1600       |  |  |
| M8    | 800        |  |  |
| M7    | 800        |  |  |
| M6    | 280        |  |  |
| M5    | 280        |  |  |
| M4    | 280        |  |  |
| M3    | 140        |  |  |
| M2    | 140        |  |  |
| M1    | 130        |  |  |
| Poly  | 125        |  |  |
| (b)   |            |  |  |



## New Methods – Split Fab (3/3)

#### Challenges


- Each FEOL/BEOL combination is, in effect, a new process node; creating both technical and business challenges
- Technical Challenges
  - Customers require production-qualified EDA flows, design kits and physical IP (SERDES, memories, cell libraries, etc) and reliability.
  - Lithography challenges compatible mask alignment, registration, etc. (generally requires sharing process information)
  - Material compatibility thermal stress, adhesion, etc.
  - Can a trailing edge BEOL be built on top of an advanced FEOL?
  - Can the above challenges be mitigated if the BEOL matches the FEOL fab's BEOL?
- Business Challenges
  - Financial investment, as required to overcome the above challenges
  - Legal agreements to enable sharing sensitive information between fabs

#### Recommendation

- No visible near-team likelihood for Option B (advanced, non-Trusted FEOL; trailing, Trusted BEOL)
- Option A (both foundries, Trusted) may open specialized technical capabilities (not Trust-related) for trailing edge customers within the DMEA Trusted Foundry program



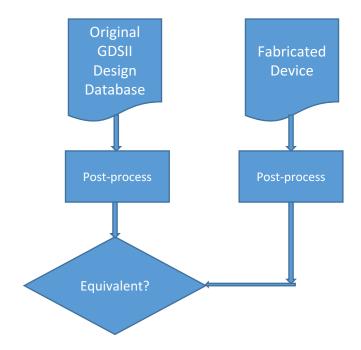
## New Methods to Instill Trust – Equivalence Checking (1/3)





## New Methods – Equivalence Checking (2/3)

#### Introduction


 The tapeout GDSII database is compared to the fabricated semiconductor device. The GDSII and/or device are post-processed to enable comparison.

#### Potential Benefit

Reduce risk of malicious insertion during fabrication

## Equivalence Checking Techniques

- Trojan detection techniques research stage
  - Digital watermarking. (Straightforward for protection of SW, FPGA bitfiles, Soft IP)
  - Path delay analysis
  - Electromagnetic (EM) signatures
- Verification of correctness research stage
- Defensive delaying costly but workable





## New Methods – Equivalence Checking (3/3)

### Status & Challenges – Defensive Delayering

- Top layers are delayered with CMP; lower layers with Ga+ FIB
- As each layer is exposed its SEM-imaged; key is image repair software
- At 14nm, typically ~5 samples are required, but netlists been reconstructed with a single sample
- As a defensive strategy, only reconstruction and compare of individual layers is required
- Cost estimate: ~\$200K for a 5mm x 5mm 14nm die
- Challenges:
  - Sampling strategy: per-wafer-lot? per-wafer?
  - Cost reduction
  - Trust in the delaying service

#### Recommendation

- Application of defensive delayering in sensitive programs
- Continued development to reduce delaying cost and potentially enable per-chip equivalence checking



## Recommendations - Preliminary

- New Methods have the potential in some cases, to instill a sufficient degree of trust in semiconductor fabs which are currently outside the DMEA Trusted Foundry program.
- Exploiting this potential will require investments, as recommended in this presentation,
   to ensure robustness of the most promising methods
- One size does not fit all!
  - DoDI 5200.44 should be modified to create "Trust Levels" which are defined by attack vulnerability, rather than by required implementation
  - Acceptability of an ASIC together with its foundry strategy vs the required Trust Level will be design-specific, dependent on how successfully the New Methods can be applied
  - The pragmatic approach to determining Acceptability is to establish a documentation and review process under DoDI 5200.44
- These recommendations will be further specified in the Team 4 final report