

In Pursuit of Secure Silicon

Serge Leef

VP, New Ventures Division

Mentor Graphics Corporation

Why is "Secure Silicon" an EDA problem?

- Expertise in design tools, IP and methodologies
- Relationships with SoC and ASIC design communities
- Strong connections and process integration with silicon foundries
- Ability to interact with manufacturing and test equipment
- Willingness to leverage external inventions and innovations
- Sales channel capable of reaching all value chain participants
- Most important: EDA flow integration

EDA companies are in a good position to make technical progress

Opportunities considered and rejected

■ Side channel attacks – small, services oriented market

- Targeted devices: <u>smart cards and set top boxes</u>
- Defensive strategies are well-understood
 - Incorporate randomness into cryptography
 - Use fixed-time algorithms to reduce data-related timing signatures
 - Camouflage structures to make relevant portions harder to find
- Mostly services with estimated revenues of sub \$50M

■ Hardware Trojans – no visible demand for a solution

- Trojan detection during design is a HARD problem
 - Search for unknown-unknowns
 - Trojan circuits look just like normal hardware
 - Further obfuscation occurs during synthesis
 - Low probability triggers can be hidden in the finite state machines
- Most viable defense strategies are around "IP Protection"
- Some level of run-time detection is possible

Commercial world of chip security

- Current activity is driven by the need to protect against economic damage in banking and broadcast application spaces
- New drivers will be related to deployment of 55B IoT edge nodes, some of which will have sufficient exposure to economic losses to warrant search for solutions

Which IoT applications warrant investment in secure chips? It will be dictated by economics of E2E application security

Key factors that drove demand in banking and broadcast:

- Loss of revenue
- Liability exposure

Which National Security applications warrant investment in secure chips? *All of them?*

Source: Orbital ATK

Source: internet

Source: thestack.con

Source: LucasFilm

Key factors in National Security applications:

- Component provenance
- System integrity/assurance
- Reverse engineering resistance

Anti Reverse Engineering: End to End Camouflaging Methodology

Logic Design

Physical Design

Field Programming

Anti Reverse Engineering: Obfuscation of key design IP blocks

Logic encryption/obfuscation engine

- Inserting logic in areas to be protected
- Additional logic elements are injected at hard-to-find sites to obscure the operational intent
- Connected to a key of arbitrary length that can turn these elements into pass-throughs

Gate

Level

Verilog

Load Verilog Gate

Level Netlist

front-end

Circuit

DAG

- Added area (cost) may not be prohibitive (i.e. 5% for 250M gate design)
- Strong obfuscation makes it difficult to reverse engineer the IC
- Potential solution to mitigate for limited availability of trusted foundries

Challenges

- Selection of injections sites to be made in context of minimal impact on size, performance, power, observability, etc
- Structure and size of these elements can also vary substantially and s related to reverse engineering resistance properties

Obfuscated

Circuit

DAG

Obfuscation and

Simple Testing

Algorithms

User Settings

back-end

Verilog Code

Generator

Obfuscated

Verilog

Netlist

Creating Secure Silicon in an Untrusted Environment — VPN for Silicon

End-to-End Solution Strategy for the Value Chain

Server Grades and Use Models

DoD Controlled

Mil-Aero IC Suppliers

On Premises

Large IC Suppliers

Foundries & OSATs

Multi Tenant

Small IC Suppliers

Increasing Value With Big Data Analytics

Enabling Several Identity Strategies

- Include into SoC comprehensive subsystem with inborn identity
 - Pro: enables authentication, provisioning, tracking, metering, very small attack surface, guarantee of silicon authenticity
 - Con: significantly impacts chip design, size too big for some chips
- Include into SoC a storage structure with programmable identity
 - Pro: small and easy to incorporate into designs, common current method
 - Con: requires trust injection event, can't distinguish counterfeits
- Include identity structure into chip packaging
 - Pro: non-invasive, can be added to old chips
 - Con: requires a trust attachment event, only supports authentication

Use Case: Digital Media End-to-End Solution

Prevent SoC Reverse Engineering

Inject Keys or Codes to Provision SoC

Embed, Hide & Enroll RoT

Distribute & Unlock Content from SoC

*With Trusted Ecosystem Partners

Relationships in the Digital Media Ecosystem

Digital Media Ecosystem: Setup

Digital Media Ecosystem: Order Fulfilment

Digital Media Ecosystem: Billing

Digital Media Ecosystem: Consumer Interaction

www.mentor.com

Secure-Connected Collaboration Needed in

Vertical Markets Where Security has Clear Monetary and Legal Value

Supply Chain Trusted Ecosystem Alliance is essential for Security

Challenges observed and addressed in banking and broadcast markets

- Reverse engineering can be addressed with camouflaging and obfuscation
 - Can protect against mask theft and inspection based attacks
 - Approach
 - Camouflaging at functional and physical levels
 - Selective obfuscation of "secret" IP blocks
- Unique identity is an ideal root-of-trust for protecting the value chain
 - Can combat supply chain attacks:
 - Recycling, remarking, cloning, counterfeiting, overproduction
 - Approach
 - Enrollment, Provisioning, Authentication, Selective Logic Obfuscation
 - Metering, Data Analytics, Authentication-enabled Applications
- Business models needed to be created to provide value to all stakeholders
 - Approach
 - Parties along the value chain pay for participation (silicon vendors, system integrators, operators)
 - Party at the end of the supply chain with the greatest economic stake pays per chip royalties

TrustChain [™] platform will be introduced at Design Automation Conference 2017 | Austin, TX | June 18-22

Taphs Alaman Alaman

www.mentor.com