In Pursuit of Secure Silicon

Serge Leef
VP, New Ventures Division
Mentor Graphics Corporation
Why is “Secure Silicon” an EDA problem?

- Expertise in design tools, IP and methodologies
- Relationships with SoC and ASIC design communities
- Strong connections and process integration with silicon foundries
- Ability to interact with manufacturing and test equipment
- Willingness to leverage external inventions and innovations
- Sales channel capable of reaching all value chain participants
- Most important: EDA flow integration

EDA companies are in a good position to make technical progress
Opportunities considered and rejected

- **Side channel attacks – small, services oriented market**
 - Targeted devices: smart cards and set top boxes
 - Defensive strategies are well-understood
 - Incorporate **randomness** into cryptography
 - Use **fixed-time algorithms** to reduce data-related timing signatures
 - **Camouflage** structures to make relevant portions harder to find
 - Mostly services with estimated revenues of sub $50M

- **Hardware Trojans – no visible demand for a solution**
 - Trojan detection during design is a HARD problem
 - Search for **unknown-unknowns**
 - Trojan circuits look just like **normal** hardware
 - Further obfuscation occurs during **synthesis**
 - Low probability **triggers can be hidden** in the finite state machines
 - Most viable defense strategies are around “IP Protection”
 - Some level of run-time detection is possible
Commercial world of chip security

- Current activity is driven by the need to protect against economic damage in banking and broadcast application spaces.
- New drivers will be related to deployment of 55B IoT edge nodes, some of which will have sufficient exposure to economic losses to warrant search for solutions.
Which IoT applications warrant investment in secure chips?

It will be dictated by economics of E2E application security

Key factors that drove demand in banking and broadcast:

- Loss of revenue
- Liability exposure
Which National Security applications warrant investment in secure chips? *All of them?*

Key factors in National Security applications:

- Component provenance
- System integrity/assurance
- Reverse engineering resistance
Anti Reverse Engineering:
End to End Camouflaging Methodology

In Pursuit of Secure Silicon - Feb 2017

Strength

Logic Design

Cell Lib → Camo Design Netlist

Camo Design Netlist

Physical Design

PDK → Camo P&R and GDSII

Field Programming

Camo Bitstream

CPU

DRAM

CPU

IP
Anti Reverse Engineering: **Obfuscation of key design IP blocks**

- **Logic encryption/obfuscation engine**
 - Inserting logic in areas to be protected
 - Additional logic elements are injected at hard-to-find sites to obscure the operational intent
 - Connected to a key of arbitrary length that can turn these elements into pass-throughs
 - Added area (cost) may not be prohibitive (i.e. 5% for 250M gate design)
 - Strong obfuscation makes it difficult to reverse engineer the IC
 - Potential solution to mitigate for limited availability of trusted foundries

- **Challenges**
 - Selection of injections sites to be made in context of minimal impact on size, performance, power, observability, etc
 - Structure and size of these elements can also vary substantially and are related to reverse engineering resistance properties
Creating Secure Silicon in an Untrusted Environment — VPN for Silicon

Data → Secure Tunnel (VPN) → Users

IC Design → Supply → Solution → Users

“VPN” for Trusted Silicon
End-to-End Solution Strategy for the Value Chain

SoC Supply Chain:
- SoC Supplier
- Wafer Test
- Packaging
- OEM

Device Supply Chain:
- Assembly
- Applications

Feature Provisioning:
- Usage Tracking

Embed Security:
- Enroll SoCs
- Configure SoCs
- Personalize SoCs
- Certify Devices
- Authorize Uses

Main Server:
- Chip Identity
- Authentication
- Remote Clients

Enroll SoCs:
- Fingerprints
- Keys + Data

Configure SoCs:
- Keys + Data
- Feature Provisioning

Personalize SoCs:
- Feature Provisioning

Certify Devices:
- Feature Provisioning

Authorize Uses:
- Feature Provisioning

© Mentor Graphics Corp. Company Confidential
www.mentor.com
Server Grades and Use Models

DoD Controlled
Mil-Aero IC Suppliers

- DoD Security
- Analytics
- FP Data
- Parts DB

On Premises
Large IC Suppliers

- Analytics
- Parts DB
- FP Data
- Foundries & OSATs
- Device Manufacturer
- Dev. Cert
- EMS Vendor
- OEM1
- OEM2
- OEM3

Multi Tenant
Small IC Suppliers

- FP Data
- Parts DB1
- Parts DB2
- Parts DB3
- Status & Provisioning UI
- Analytics
- Notifications
- Connected Devices

In Pursuit of Secure Silicon - Feb 2017
Increasing Value With Big Data Analytics

IC Supplier
- Design Control
 - Field Data

Foundry
- Test Pattern Parts & SNs
 - Registration
 - Wafer Info Chip IDs
 - Tester Env

OSAT
- SKU Config Part SNs
 - Binning
 - Package IDs SKU Logs
 - Tester Env

System OEM
- PCB Config Certificates
 - Provisioning
 - App Modes Debug Logs
 - Debug Env

EMS Vendor
- SNs & SKUs Device IDs
 - Personalization
 - Device Info PCB SKUs
 - Assembly Env

Field Use
- Port Config Set Meters
 - Authorization
 - Chip Status Metering
 - Device Env

BIG DATA
- On Premises or Cloud
 - Wafer Lot Die IDs Serial No
 - Serial No Package IDs SKU Logs
 - Serial No App Modes Debug Logs
 - Serial No Device ID PCB Logs
 - Serial No Status Meter Usage Data

In Pursuit of Secure Silicon - Feb 2017
Enabling Several Identity Strategies

- Include into SoC comprehensive subsystem with inborn identity
 - Pro: enables authentication, provisioning, tracking, metering, very small attack surface, guarantee of silicon authenticity
 - Con: significantly impacts chip design, size too big for some chips

- Include into SoC a storage structure with programmable identity
 - Pro: small and easy to incorporate into designs, common current method
 - Con: requires trust injection event, can't distinguish counterfeits

- Include identity structure into chip packaging
 - Pro: non-invasive, can be added to old chips
 - Con: requires a trust attachment event, only supports authentication
Use Case: Digital Media End-to-End Solution

Prevent SoC Reverse Engineering

Inject Keys or Codes to Provision SoC

Embed, Hide & Enroll RoT

Distribute & Unlock Content from SoC

*With Trusted Ecosystem Partners
Relationships in the Digital Media Ecosystem

SoC Designer ➔ SoC Maker(s) ➔ Set Top Box Vendor ➔ Cable Operator ➔ Content Consumer

- Chip Order ➔ Chips ➔ Boxes ➔ Content Delivery
- Box Order ➔ Boxes ➔ Content Request

Security Vendor ➔ Inject Keys ➔ Access Control Vendor ➔ Content Provider

- Key Database ➔ Keys ➔ Invoice ➔ Authorization Request ➔ Authorization Response
- Royalties ➔ Royalties

Production Report ➔ One-time IP Setup ➔ Chip Order

© Mentor Graphics Corp.
www.mentor.com
Digital Media Ecosystem: Order Fulfilment

In Pursuit of Secure Silicon - Feb 2017
Digital Media Ecosystem: Billing

- SoC Designer
- SoC Maker(s)
- Chip Order
- Chips
- Set Top Box Vendor
- Boxes
- Cable Operator
- Content Consumer
- Content Request
- Content Delivery
- Content Provider
- Royalties
- Key Database
- Production Report
- One-time IP Setup
- Inject Keys
- Access Control Vendor
- Authorization Request
- Authorization Response
- Access Control Vendor
- Invoice
Digital Media Ecosystem: **Consumer Interaction**

- **SoC Designer**
 - Production Report
 - One-time IP Setup

- **SoC Maker(s)**
 - Chip Order
 - Inject Keys

- **Set Top Box Vendor**
 - Chips
 - Invoice

- **Cable Operator**
 - Chip Order
 - Box Order
 - Authorization Request
 - Authorization Response
 - Content Request
 - Content Delivery
 - Content

- **Content Consumer**

- **Content Provider**

- **Security Vendor**
 - Keys
 - Key Database

- **Access Control Vendor**
 - Royalties

In Pursuit of Secure Silicon - Feb 2017

© Mentor Graphics Corp.
www.mentor.com
Secure-Connected Collaboration Needed in Vertical Markets Where Security has Clear Monetary and Legal Value

Supply Chain Trusted Ecosystem Alliance is essential for Security

Source: ST Microelectronics
Challenges observed and addressed in banking and broadcast markets

- **Reverse engineering** can be addressed with camouflaging and obfuscation
 - Can protect against mask theft and inspection based attacks
 - Approach
 - Camouflaging at functional and physical levels
 - Selective obfuscation of “secret” IP blocks

- **Unique identity** is an ideal root-of-trust for protecting the value chain
 - Can combat supply chain attacks:
 - Recycling, remarking, cloning, counterfeiting, overproduction
 - Approach
 - Enrollment, Provisioning, Authentication, Selective Logic Obfuscation
 - Metering, Data Analytics, Authentication-enabled Applications

- **Business models** needed to be created to provide value to all stakeholders
 - Approach
 - Parties along the value chain pay for participation (silicon vendors, system integrators, operators)
 - Party at the end of the supply chain with the greatest economic stake pays per chip royalties
TrustChain™ platform will be introduced at Design Automation Conference 2017 | Austin, TX | June 18-22