The DARPA solution is to provide a menu of hardware security options that can be selectively applied based on need.

<table>
<thead>
<tr>
<th>Protection</th>
<th>Program</th>
<th>Loss of Information</th>
<th>Fraudulent Products</th>
<th>Loss of Access</th>
<th>Malicious Insertion</th>
<th>Quality and Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Government Intervention</td>
<td>Other</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TIC (IARPA)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine Disaggregation and Transience</td>
<td>VAPR</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Disaggregation</td>
<td>SPADE</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAHI</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHIPS</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Obscuration and Marking</td>
<td>CRAFT</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eFuses</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHIELD</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Verification and Validation</td>
<td>IRIS</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRUST</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

CRAFT can help ensure multiple sources of supply for leading-edge ASICs, providing the flexibility to move between foundries when necessary.
CRAFT Vision

“To sharply reduce the barriers to DoD use of custom-integrated circuits built using leading-edge CMOS technology. Make design faster and access easier.”

Faster designs in commercial, leading-edge CMOS are more secure because:

- Decreased design effort enables more and faster updates
 - The time frame available to compromise an SoC is reduced
 - The time frame required to respond to a compromise is also reduced
- The inherent complexity and small feature size of FinFET designs make reverse engineering more difficult
 - Level of commercial reverse engineering difficulty would go from ~ 3 months of effort (90nm technology) to ~ 1 year of effort (FinFET technology)
- Use of commercial fabrication processes allows use of commercial security methods developed at great cost by the semiconductor industry
 - Massive amount of circuit verification
 - Independent, unbiased foundry services
 - Common libraries of secure IP
Performance versus development cycle times

Today you have to choose between performance and schedule/cost.

<table>
<thead>
<tr>
<th></th>
<th>Qty</th>
<th>Power Req.</th>
<th>Dev. Cycle Time</th>
<th>Current Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Purpose Central Processor (CPU)</td>
<td>28</td>
<td>1260W</td>
<td>~6 months</td>
<td>Low performance at power</td>
</tr>
<tr>
<td>Field Programmable Gate Array (FPGA)</td>
<td>4</td>
<td>120W</td>
<td>~12 months</td>
<td>Low performance at power</td>
</tr>
<tr>
<td>Custom Integrated Circuit (Custom IC)</td>
<td>1</td>
<td>5W</td>
<td>~24 months</td>
<td>High performance at power</td>
</tr>
</tbody>
</table>

Example Data from representative DoD design

DISTRIBUTION A. Approved for public release: distribution unlimited.
CRAFT Vision
To sharply reduce the barriers to DoD use of custom integrated circuits built using leading-edge CMOS technology while maintaining the high level of performance at power promised by this technology.
Why does DoD need custom ICs?

Current EW approach single channel non-real time 240W

Next-Gen Cognitive EW approach, wide band, real time 100W

Data from ISSCC papers 2010 – 2013 and "Energy Efficient Computing on Embedded and Mobile Devices" on nVidia.com

DISTRIBUTION A. Approved for public release: distribution unlimited.
Current design flow takes so long that it is throttling DoD access to advanced technology

Existing DoD custom IC product cycle time can take as long as **2.5 years**.
- 60%: Design (most of which is verification)
- 40%: Fabrication (20%/fab spin)

Using “Object Oriented Design” and enhanced hierarchy, we want to achieve:
- Reduction in design time by 10X through a strong reduction in verification time and removal of minimum area constraint
- “First Time Right” design methods to eliminate the need for repeated fabrication runs.
- Reduction in fabrication time to 2X commercial

Data from industry survey by DARPA consultants

DISTRIBUTION A. Approved for public release: distribution unlimited.
Market differences

<table>
<thead>
<tr>
<th></th>
<th>Low Volume</th>
<th>Moderate Volume Commercial</th>
<th>High Volume Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Cost</td>
<td>Major contributor to total SoC cost</td>
<td>Major contributor to total SoC cost</td>
<td>Minor portion of total SoC cost</td>
</tr>
<tr>
<td>Fabrication Cost</td>
<td>Small contributor to total SoC cost</td>
<td>Significant contributor to total SoC cost</td>
<td>Major contributor to SoC cost</td>
</tr>
<tr>
<td>Volume</td>
<td>1k parts</td>
<td>1,000k parts</td>
<td>100,000k parts</td>
</tr>
<tr>
<td>Area</td>
<td>Not important</td>
<td>Relatively unimportant</td>
<td>Critical</td>
</tr>
<tr>
<td>Design Schedule/Risk</td>
<td>Critical</td>
<td>Critical</td>
<td>Critical</td>
</tr>
<tr>
<td>Performance at Power</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
</tbody>
</table>

- **Design NRE**: 92% (Low), 69% (Moderate), 9% (High)
- **Production**: 1% (Low), 9% (Moderate), 89% (High)

DISTRIBUTION A. Approved for public release: distribution unlimited.
High-Level Description of CRAFT
CRAFT: Enabling use of the best commercial technology

CRAFT aims to provide solutions to the three major obstacles restricting custom IC design and fabrication for DoD systems.

DESIGN
- Design requires 18-24 months of effort
- Design verification takes far too much effort
- Fab cycles are too long and too uncertain
- Access to leading-edge CMOS is difficult

PORT/MIGRATE
- Designers are limited to one foundry
- Migration of designs from one node to another is difficult and expensive

REPOSITORY
- Severe lack of IP reusability for DoD designs
- Current audit model for custom IC design/hardware security is broken

*CRAFT aims to create new design flows that will reduce custom IC design cycle time by **10x** and increase design robustness through object-oriented design techniques*

CRAFT aims to use new design flows to ensure multiple sources of supply and reduce node migration effort by 80% to keep DoD out of “the Silicon Island”

CRAFT aims to establish a data location and methodology to ensure 50% IP reuse by DoD performers*

*CRAFT’s goal is to enable more efficient custom IC design/fabrication to enable HIGH performance electronic solutions **FASTER** and with more **FLEXIBILITY***

IP – Sub-circuits used for modern custom ICs
We need a new custom IC design flow

New Software Tool
- Use of modern software engineering methods
- Automated representation translation
- Automated verification
- Reduces effort required to port design to a 2nd source foundry
- Distributed through a government IP repository

Object-Oriented Design (OOD) Flow
High-level object-oriented language -> Schematic

Raise Level of Abstraction
- Use existing EDA tools
- Higher level of hierarchy
- Use of generators/constructs

Existing ASIC Flow

New Software Tool

Object-Oriented Design (OOD) Flow
High-level object-oriented language -> Schematic

Raise Level of Abstraction
- Use existing EDA tools
- Higher level of hierarchy
- Use of generators/constructs

New Software Tool

Object-Oriented Design (OOD) Flow
High-level object-oriented language -> Schematic

Raise Level of Abstraction
- Use existing EDA tools
- Higher level of hierarchy
- Use of generators/constructs

New Software Tool

Object-Oriented Design (OOD) Flow
High-level object-oriented language -> Schematic

Raise Level of Abstraction
- Use existing EDA tools
- Higher level of hierarchy
- Use of generators/constructs

New Software Tool

Object-Oriented Design (OOD) Flow
High-level object-oriented language -> Schematic

Raise Level of Abstraction
- Use existing EDA tools
- Higher level of hierarchy
- Use of generators/constructs

New Software Tool

Object-Oriented Design (OOD) Flow
High-level object-oriented language -> Schematic

Raise Level of Abstraction
- Use existing EDA tools
- Higher level of hierarchy
- Use of generators/constructs

New Software Tool

Object-Oriented Design (OOD) Flow
High-level object-oriented language -> Schematic

Raise Level of Abstraction
- Use existing EDA tools
- Higher level of hierarchy
- Use of generators/constructs

New Software Tool

Object-Oriented Design (OOD) Flow
High-level object-oriented language -> Schematic

Raise Level of Abstraction
- Use existing EDA tools
- Higher level of hierarchy
- Use of generators/constructs

New Software Tool

Object-Oriented Design (OOD) Flow
High-level object-oriented language -> Schematic

Raise Level of Abstraction
- Use existing EDA tools
- Higher level of hierarchy
- Use of generators/constructs

New Software Tool

Object-Oriented Design (OOD) Flow
High-level object-oriented language -> Schematic

Raise Level of Abstraction
- Use existing EDA tools
- Higher level of hierarchy
- Use of generators/constructs

New Software Tool

Object-Oriented Design (OOD) Flow
High-level object-oriented language -> Schematic

Raise Level of Abstraction
- Use existing EDA tools
- Higher level of hierarchy
- Use of generators/constructs

New Software Tool

Object-Oriented Design (OOD) Flow
High-level object-oriented language -> Schematic

Raise Level of Abstraction
- Use existing EDA tools
- Higher level of hierarchy
- Use of generators/constructs
Feasibility demonstration for CRAFT design goals: BOOM-2 RISC V Core designed using CHISEL

CHISEL is an Object Oriented Design demonstration flow/tool developed at UC-Berkeley

BOOM-2 RISC V Core

- Designed using CHISEL flow/tools
 - 6 graduate students ("2-pizza size team")
 - 6 months to design
- ~ 25M transistors and chip area of 1.0mm²
- 40nm technology
- 1.5 GHz clock rate
- Completed in November 2014

CHISEL Specifics

- CHISEL written in Scala programming language
- Parameterized generators used
- ~9,000 New “Lines of Code in CHISEL
- ~ 11,500 reused “Lines of Code” from previous projects
 - ~5,000 “Lines of Code” for processor
 - ~2,000 “Lines of Code” for floating point core
 - ~4,500 “Lines of Code” for “uncore”

BOOM-2 is a feasibility demonstration of an OOD flow on a small digital design in an academic environment.
CRAFT aims to enable facilitated transfer of designs to multiple companies and process flows.

- Build on the CRAFT-developed Object-Oriented Design flow to develop a port/migrate flow that reduces effort by 80%
- Fabricate and analyze CRAFT macros/generators at 16nm/14nm and 10nm at other foundries to facilitate migration
- Port prototypical designs to an alternate 16nm/14nm foundry, and migrate prototypical designs to a 10nm foundry

Method to avoid the “Si Island”

CRAFT aims to use new design flows to ensure multiple sources of supply and reduce node migration effort by 80%
Facilitated port/migrate through use of the CRAFT OOD flow

Current ASIC Design Flow
- High Level description
- Logical Descript’n
- Gate Level Descript’n
- Schematic Descript’n
- Place & Route
- Layout Descript’n

New CRAFT Design Flow
- Object-Oriented Design (OOD) Flow
 - High level object-oriented language -> Transistor

CRAFT aims to sharply reduce the amount of “foundry-unique” work required for a design.
Design foundation will be developed at a 2nd source foundry as part of CRAFT.
The OOD Flow will be reused to reduce the effort to port designs.
CRAFT aims to establish location for items required for DoD users of the OOD flow.

OOD flow requirements
- OOD software, tools
- OOD components
 - Generators
 - Macros
 - OOD specific IP (e.g. RISC-V processor, Vreg, ...)
- OOD examples and best practices
- Foundry-provided design rules and technology files

Data and models
- Foundry-provided reliability
- Extended reliability (government limits)
- Device and circuit radiation response
- IP
 - Foundry-provided IP (e.g. SRAM bit cells, eFuse, ...)
 - 3rd party IP (e.g. logic library, memory compiler, ...)
 - Government IP (e.g. rad hard library, A/D, ...)

CRAFT aims to establish a data location and distribution protocol to ensure efficiency through reuse of OOD flow components and methodology.

DISTRIBUTION A. Approved for public release: distribution unlimited.
DARPA multi-project run (MPW) shuttle details

- **ALL runs available to ALL Defense Contractors**
 - Wafer diameter: 300mm
 - Single exposure area: 26mm\(\times\)33mm
 - Exposures (shots)/wafer: ~80
 - Project area unit: 2.5mm\(\times\)2.5mm
 - Projects/shot: ~100

- A single FinFET process flow (TSMC 16FFC)
 - Bulk FinFET transistors with dual gate oxide
 - BEOL stack: 9 levels of Cu wiring
 - Standard passive components (no deep trench capacitor)
 - Standard eFuse blocks
 - HD and HP SRAM bit cell

- **Schedule**
 - PDK available: January, 2016
 - Training: May-June 2016
 - Firm shuttle commitment from users required: June, 2016
 - Design submission (GDS-In): July, 2016
 - Follow on runs 4/2017, 1/2018, 1/2019
 - Die back to users: (GDS-In + 6 months)

- **Aggregator/interface/training organization**
 - All questions for the foundry will go through MOSIS
 - All GDS will be sent to MOSIS

- User cost planned to be ~ $50K/project (2.5mm\(\times\)2.5mm)
CRAFT performers

<table>
<thead>
<tr>
<th>Prime</th>
<th>Prototype SoC</th>
<th>Anticipated Teams</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC-Berkeley</td>
<td>Multi-Application EW/Radar SoC</td>
<td>UC-Berkeley, Northrop-Grumman Electronic Systems, Cadence</td>
</tr>
<tr>
<td>Boeing</td>
<td>Multi-Application Reconfigurable DSP SoC</td>
<td>Boeing, Stanford University, UC-Los Angeles, Totic, Synopsys</td>
</tr>
<tr>
<td>Nvidia</td>
<td>Computer Vision Accelerator</td>
<td>Nvidia, Harvard</td>
</tr>
<tr>
<td>UC-San Diego</td>
<td>Autonomous Vehicle Perception/Decision SoC</td>
<td>UC-San Diego, Cornell University of Michigan, UC-Los Angeles</td>
</tr>
<tr>
<td>Carnegie-Mellon University</td>
<td>NA</td>
<td>Carnegie-Mellon University</td>
</tr>
<tr>
<td>USC/ISI</td>
<td>NA</td>
<td>USC/ISI, Notre Dame University</td>
</tr>
</tbody>
</table>

- Mixture of different types of entities across the industry
 - Commercial and defense companies
 - Small and large companies
 - Universities as prime contractors and sub contractors

DISTRIBUTION A. Approved for public release: distribution unlimited.
How does the industry obtain access to CRAFT results?

- CRAFT-developed software tools and design flows
 - Software tools and flows will be available through the funded repository
 - We will seek DoD example SoCs to implement using the flow in phases II and III

- Commonly needed commercial design IP
 - CRAFT DoD advisory board will recommend commonly needed commercial design IP
 - The CRAFT program will work broad agreement terms for the commercial IP

- Commonly needed commercial design software
 - The CRAFT design flow will lead to a set of commonly needed commercial design software
 - The CRAFT program will work broad agreement terms for this software

- CRAFT-dedicated, 16nm, multi-project runs that will occur every 9 months
 - All DoD contractors are welcome to place structures and circuits on these runs
 - Cost will be ~ $10K/mm^2 of die area
 - Die will be back within 6 months of design data delivery by users
Securing designs in an open fabrication environment

• Obscure circuit design intent by adding entropy to the released design data
 • Goal is to render the design data given to the foundry/mask shop unusable
 • Goal is to render the eventual design intent non-discernible by a thief or attacker

• Obscurity is then removed through post-wafer fabrication processes
 • Electronically activated fuses (efuse or anti-fuse), OR
 • Personalized at test or during system deployment
 • Embedded Non-Volatile Memory (NVM or Flash), OR
 • Personalized at test or during system activation
 • Other techniques TBD

• Advantages
 • Removes the risk of design data or die loss during mask and wafer fabrication
 • DoD-dedicated test equipment is inexpensive (~$100K) and relatively easy to implement while DoD-dedicated wafer fab is very expensive (~$10B) and exceptionally hard to implement

• Disadvantages
 • Requires an additional step in the IC design process to obscure the design
 • Does not protect the integrity of the original design data
 • Does not protect the integrity of the supply chain after final personalization
 • This will be addressed by the SHIELD program
IC obscuration through personalization

- Datapaths can be generalized to remove specificity of use
- Datapath specialization enabled by eFuses
- Data path defined after personalization

<table>
<thead>
<tr>
<th>Name of IP</th>
<th>Area Overhead</th>
<th>Power Overhead</th>
<th>Obfuscation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>QR Decomposition (CLASS IC)</td>
<td><1%</td>
<td><1%</td>
<td>FSM</td>
</tr>
<tr>
<td>Eigen Value Decomposition (CLASS IC)</td>
<td><1%</td>
<td><1%</td>
<td>FSM</td>
</tr>
<tr>
<td>Communication Transmitter (CLASS IC)</td>
<td><1%</td>
<td><1%</td>
<td>FSM</td>
</tr>
<tr>
<td>Sparse Polynomial Equalizer (REDSOC IC)</td>
<td><1%</td>
<td><1%</td>
<td>Coefficient</td>
</tr>
<tr>
<td>Biquad Equalizer (REDSOC IC)</td>
<td><1%</td>
<td><1%</td>
<td>Coefficient</td>
</tr>
<tr>
<td>Nonlinear Equalizer (NLEQ IC)</td>
<td><30%</td>
<td><10%</td>
<td>Coefficient/Datapath</td>
</tr>
<tr>
<td>Sparse FFT (Sparse FFT IC)</td>
<td><7%</td>
<td><10%</td>
<td>FSM/Datapath</td>
</tr>
</tbody>
</table>

Source: MIT/Lincoln Laboratories