A TECHNOLOGY-ENABLED NEW TRUST APPROACH

Dr. William Chappell
Director, DARPA Microsystems Technology Office (MTO)

NDIA Trusted Microelectronics Workshop

August 17, 2016

DISTRIBUTION A. Approved for public release: distribution unlimited.
DISTRIBUTION A. Approved for public release: distribution unlimited.
Develop processing architectures for next generation machine learning.

Move from fear to exploiting a new technology approach.

Expand our lead in the physical realm.
DoD faces unique security challenges in protecting its microelectronics against advanced nation-states.

Fabrication & Assembly

Potential Attacks
- Malicious insertion
- Fraudulent products
- Loss of CPI
- Poor quality
- Reliability failures
- Loss of access

Overproduction & Test Fails

Counterfeiting

Hardware or IP theft

Cloning

Design Compromise

Reliability Compromise

Supply Chain Risk

DISTRIBUTION A. Approved for public release: distribution unlimited.
Leading-edge microelectronics offer specific, military-relevant advantages to DoD

~5 - 10x performance gain from 130nm to 10nm

Computational Efficiency (GOPS/W) vs Technology Node

Data from ISSCC papers 2010 – 2013 and "Energy Efficient Computing on Embedded and Mobile Devices" on nVidia.com

DISTRIBUTION A. Approved for public release: distribution unlimited.
Example ASICs under development could deliver revolutionary capabilities to the warfighter

- **ACT**: Capture unprecedented volumes of RF data at 64Gs/sec for next-gen arrays
- **CLASIC**: Distinguish and classify RF signals for 180 hours on a cellphone battery
- **CLASS**: Disguise and dynamically vary signals for inexpensive LPI/LPD comms
- **DAHI**: 10x higher dynamic range arbitrary waveform generator for EW solutions
- **ReImagine**: Collect different data in a single camera frame with a reconfigurable ROIC
- **RF-FPGA**: A software-defined front end that works for 20GHz or below
- **SHIELD**: Verify the authenticity of components at every point in the supply chain
- **SPADE**: Build trusted circuits through 3D integration
- **UPSIDE**: Enable real-time machine learning for object recognition on UAV
Example ASICs under development could deliver revolutionary capabilities to the warfighter.

ACT
- Capture unprecedented volumes of RF data at 64Gs/sec for next-gen arrays
- Leverage the world’s best digital beamforming system

SHIELD
Verify the authenticity of components at every point in the supply chain

CLASS
Disguise and dynamically vary signals for inexpensive LPI/LPD comms

CLASIC
Distinguish and classify RF signals for 180 hours on a cellphone battery

UPSIDE
Enable real-time machine learning for object recognition on UAV

DISTRIBUTION
A. Approved for public release: distribution unlimited.
Example ASICs under development could deliver revolutionary capabilities to the warfighter

ReImagine
- Achieve full battlespace awareness with a single reconfigurable ROIC
- Simultaneously collect diverse data types from multiple regions of interest

14nm CMOS

DISTRIBUTION A. Approved for public release: distribution unlimited.
Example ASICs under development could deliver revolutionary capabilities to the warfighter

Microscopic SHIELD dielet

SHIELD
- Ensure the authenticity of genuine military electronic components
- Tag electronics at low cost with an encrypted 100µm x 100µm ASIC

14nm CMOS

Example
- **CLASS** Disguise and dynamically vary signals for inexpensive LPI/LPD communications
- **SHIELD** Verify the authenticity of components at every point in the supply chain
- **CLASIC** Distinguish and classify RF signals for 180 hours on a cellphone battery
- **UPSIDE** Enable real-time machine learning for object recognition on UAVs
- **DAHI** 10x higher dynamic range arbitrary waveform generator for EW solutions
- **ACT** Capture unprecedented volumes of RF data at 64Gs/sec for next-gen arrays
- **ReImagine** Collect different data in a single camera frame with a reconfigurable ROIC
- **RF-FPGA** A software-defined front end that works for 20GHz or below
- **SPADE** Build trusted circuits through 3D integration

DISTRIBUTION A. Approved for public release: distribution unlimited.
The semiconductor market sustains a large ecosystem, with many leading-edge firms operating within the United States. A few small players include:

- GLOBALFOUNDRIES
- Qorvo
- CREE
- Cypress
- ON Semiconductor
- TowerJazz

Govern't-owned Suppliers:

- Intel
- Samsung
- TSMC
- SK Hynix
- Micron
- Texas Instruments
- GLOBALFOUNDRIES
- Qualcomm
- ARM
- ...
DoD will have to collaborate with the multinational semiconductor firms with leading-edge capabilities

14-nm fabrication is only available through highly-consolidated, global multinational firms
Reliance on trusted suppliers can limit potential partners, yielding few options for trusted access to leading-edge CMOS

<table>
<thead>
<tr>
<th>Foundry Choices</th>
<th>Process node for leading-edge products</th>
<th>Design-to-chip turnaround time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>Multiple global options</td>
<td>14nm – 10nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9-10 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(400 engineers)</td>
</tr>
<tr>
<td>DoD</td>
<td>One strategic partner</td>
<td>65nm – 32nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-3 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10 engineers)</td>
</tr>
</tbody>
</table>

Source: DMEA, as of Aug 2016
It is the right time for DoD to reflect on its strategy

Today: DoD relies on a single, sole-source supplier for leading-edge microelectronics

Tomorrow: Technology-driven security techniques can enable new DoD options for acquiring state-of-the-art, commercial microelectronics

Sole-source Fabrication below 90nm

Trusted Design

Commercial Fabrication

- GLOBALFOUNDRIES
- Samsung
- TSMC
- Intel

Trusted DoD Electronics
Selective application of countermeasures can demonstrate "trust through technology" for a representative device.

To ensure security and to leverage the globalized supply chain, DARPA and other agencies are developing a technology-enabled portfolio of protections.
The DARPA solution is to provide a menu of hardware security options that can be selectively applied based on need.

<table>
<thead>
<tr>
<th>Protection</th>
<th>Program</th>
<th>Loss of information</th>
<th>Fraudulent products</th>
<th>Loss of access</th>
<th>Malicious insertion</th>
<th>Quality and reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government-proprietary</td>
<td>Other</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine Disaggregation and Transience</td>
<td>TIC (IARPA)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VAPR</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Disaggregation</td>
<td>SPADE</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>DAHI</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHIPS</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Obscuration and Marking</td>
<td>CRAFT</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eFuses</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHIELD</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verification and Validation</td>
<td>IRIS</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRUST</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ● Primary Impact
- ● Secondary Impact

DISTRIBUTION A. Approved for public release: distribution unlimited.
We’ve adapted to the end of Dennard’s Law but are at an inflection point.

Post-Dennard, we lose the free exponential improvements in computing cost, speed, and power from improvements in fabrication technology.
Moore’s Law has allowed the military to increasingly depend on FPGAs

Global Military/Aeronautics Shipments

Source: Multiple industry market trackers & DMEA internal data from FPGA manufacturers

DISTRIBUTION A. Approved for public release: distribution unlimited.
The end of Moore’s Law is leveling the playing field, meaning now is the time to focus on ASIC access and specialization.

Trust through technology

Acquisition personnel can selectively apply protections based on a component’s criticality, the risks faced, and the need to access leading-edge technologies.