A TECHNOLOGY-ENABLED NEW TRUST APPROACH

Dr. William Chappell
Director, DARPA Microsystems Technology Office (MTO)

NDIA Trusted Microelectronics Workshop

August 17, 2016

Role of DARPA MTO

DoD faces unique security challenges in protecting its microelectronics against advanced nation-states

Fabrication & Assembly

Potential Attacks

Malicious insertion

Fraudulent products

Loss of CPI

Poor quality

Reliability failures

Loss of access

Leading-edge microelectronics offer specific, military-relevant advantages to DoD

Data from ISSCC papers 2010 – 2013 and "Energy Efficient Computing on Embedded and Mobile Devices" on nVidia.com

Example ASICs under development could deliver revolutionary capabilities to the warfighter

0	ACT	Capture unprecedented volumes of RF data at 64Gs/sec for next-gen arrays
0	CLASIC	Distinguish and classify RF signals for 180 hours on a cellphone battery
0	CLASS	Disguise and dynamically vary signals for inexpensive LPI/LPD comms
0	DAHI	10x higher dynamic range arbitrary waveform generator for EW solutions
0	ReImagine	Collect different data in a single camera frame with a reconfigurable ROIC
0	RF-FPGA	A software-defined front end that works for 20GHz or below
0	SHIELD	Verify the authenticity of components at every point in the supply chain
0	SPADE	Build trusted circuits through 3D integration
0	UPSIDE	Enable real-time machine learning for object recognition on UAV

Example ASICs under development could deliver revolutionary capabilities to the warfighter

ACT

- Capture unprecedented volumes of RF data at 64Gs/sec for next-gen arrays
- Leverage the world's best digital beamforming system

32nm SOI vs. 14nm FinFet

Verify the authenticity of components at every point in the supply chain **SHIELD**

ntegration

for object recognition on UAV

ACT – Arrays at Commercial Timescales

arrays

ions

OIC

Example ASICs under development could deliver revolutionary capabilities to the warfighter

SHIELD Verify the authenticity of components at every point in the supply chain

ntegration

Source: Realistic infrared sequence generation by physics-based infrared target modeling for infrared search and track Sungho Kim; Yukyung Yang; Byungin Choi Opt. Eng. 49(11), 116401 (November 22, 2010). doi:10.1117/1.3509363

Example ASICs under development could deliver revolutionary capabilities to the warfighter

The semiconductor market sustains a large ecosystem, with many leading-edge firms operating within the United States

DoD will have to collaborate with the multinational semiconductor firms with leading-edge capabilities

Reliance on trusted suppliers can limit potential partners, yielding few options for trusted access to leading-edge CMOS

	Foundry Choices	Process node for leading-edge products	Design-to-chip turnaround time	
Commercial	Multiple global options	14nm – 10nm	9-10 months (400 engineers)	
DoD	One strategic partner	65nm – 32nm	2-3 years (10 engineers)	

It is the right time for DoD to reflect on its strategy

Today: DoD relies on a single, sole-source supplier for leading-edge microelectronics

Tomorrow: Technology-driven security techniques can enable new DoD options for acquiring state-of-the-art, commercial microelectronics

Selective application of countermeasures can demonstrate "trust through technology" for a representative device

To ensure security and to leverage the globalized supply chain, DARPA and other agencies are developing a <u>technology-enabled portfolio</u> of protections.

The DARPA solution is to provide a menu of hardware security options that can be selectively applied based on need

			Microelectronics Security Threats				
	Protection	Program	Loss of information	Fraudulent products	Loss of access	Malicious insertion	Quality and reliability
nent Tion	Government- proprietary	Other	•				
High Government Intervention	Fine	TIC (IARPA)	•	•	•		
High G	Disaggregation and Transience	VAPR	•				
	Functional Disaggregation	SPADE	•			•	•
		DAHI	•		•	•	
		CHIPS	•		•	•	•
		CRAFT			•		•
	Obscuration and Marking	eFuses	•			•	
ercial		SHIELD	•	•			
High Commercial Sponsorship	Verification and Validation	IRIS		•		•	•
High		TRUST		•		•	
Primary Impact Secondary Impact							

We've adapted to the end of Dennard's Law but are at an inflection point

Post-Dennard, we lose the free exponential improvements in computing cost, speed, and power from improvements in fabrication technology.

Moore's Law has allowed the military to increasingly depend on FPGAs

Global Military/Aeronautics Shipments

The end of Moore's Law is leveling the playing field, meaning now is the time to focus on ASIC access and specialization

Acquisition personnel can selectively apply protections based on a component's criticality, the risks faced, and the need to access leading-edge technologies.

