RAPID AUTHENTICATION THROUGH VERIFICATION, VALIDATION, AND MARKING

Mr. Kerry Bernstein, DARPA/MTO Program Manager

NDIA Trusted Microelectronics Workshop

August 17, 2016

The DARPA solution is to provide a menu of hardware security options that can be selectively applied based on need

				Microelectronics Security Threats				
	Protection	Program	Loss of information	Fraudulent products	Loss of access	Malicious insertion	Quality and reliability	
High Government Intervention	Government- proprietary	Other	•					
	Fine Disaggregation and Transience	TIC (IARPA)	•	•	•	•		
		VAPR	•					
	Functional Disaggregation	SPADE	•			•	•	
		DAHI	•		•	•		
		CHIPS	•		•	•	•	
High Commercial Sponsorship	Obscuration and Marking	CRAFT			•		•	
		eFuses	•			•		
		SHIELD	•	•				
	Verification and Validation	IRIS		•		•	•	
		TRUST		•		•		

SHIELD, IRIS, and TRUST can help protect against the introduction of fraudulent products and ensure that genuine microelectronics perform only as expected.

Hardware-specific exploits, mitigations

Counterfeits

Still the original part from OEM:

- Recycled used components
- OEM's fab test failures sold on black market
- Unlicensed fab overproduction

Clones

A completely different part:

- Copies fabbed in foreign plant
- New design of reverse-engineered components using stolen IP, potentially with altered function

Suspect

Good

Suspect

Good

All images courtesy of NSWC CRANE

Trend in reverse engineered + cloned component growth

Exemplary high-level clone discoveries collected over past 3 years*

Original Component Issue Date

Counterfeiter skills for reverse engineering complex components are growing, and tracking Moore's Law

^{*} Developed with B. Hamilton, NSWC Crane

TRUST in Integrated Circuits

Integrated circuits must function as designed – no more, no less

The TRUST program addressed these vulnerabilities in four thrusts:

- Trust in fabrication for ASICs
- 2. Trust in design for ASICs

- Trust in FPGAs
- 1. Trust in third-party intellectual property (IP)

Integrity and Reliability of Integrated circuitS (IRIS)

IC functionality extraction and reliability estimation

Objectives

- 100% functionality derivation given a limited data sheet and an IC, FPGA or 3rd party IP
- MTTF analysis of an IC given limited sample size
- Forensics to identify IC anomalies and determine impact on reliability

Capabilities developed

- Non-destructive imaging for feature resolution
- Algorithms for pattern recognition and netlist extraction
- Data analytics for functional derivation
- Advanced modeling and simulation techniques for reliability analysis

Artist's rendering of images provided by Air Force Research Laboratory

Virtual Laboratory

- Designed, developed and debugged test articles for performer analysis
- Evaluated performer techniques for scientific soundness, and results against program metrics

Performers

BAE Systems
SRI International
USC Information Sciences Institute
Raytheon
Luna (MacAulay Brown)
Orora
R3 Logic
Case Western Reserve Univ.
Georgia Tech
University of Michigan
Boeing
IBM
University of Arkansas

DARPA 3D reconstruction of DAC – Non-destructive

ENABLES 3D VISUALIZATION AND SPATIAL ANALYSIS

All images courtesy of SRI International

HIGH RESOLUTION IN DEPTH ENABLES LAYER SEPARATION AND MEASUREMENT OF THICKNESS WITHOUT GRINDING

The global nature of today's supply chains

Global nature of supply chain makes chain-of-custody unworkable

Source: IDC Manufacturing Insights & Booz Allen analysis

Lifecycle shown for a single Joint Strike Fighter component, which changes hands 15 times before final installation

Current untrusted logistical supply chain

For all but simplest exploits, DoD has little system component assurance of authenticity

*Assume parts have OEM integrity before leaving first Trusted Zone

SHIELD: DARPA's supply chain solution

DARPA SHIELD will develop the ability to provide nearly 100% assurance against certain known threat modes quickly, on demand, at any step of the supply chain, at extremely low cost.

SHIELD makes counterfeiting too expensive and too hard to do.

Example SHIELD CONOP

Revisiting the supply chain – now with SHIELD implementation

What makes SHIELD "DARPA-worthy?"

At 100µm by 100µm by 10µm thick, the SHIELD dielet is on track to be the smallest integrated circuit ever developed

- Whole new technologies for building the "science of SMALL"
- Remote chip communication and powering using microscopic antennae
- Design of passive sensors that cannot be reset or inadvertently triggered

SHIELD dielet surrogate (SRI International)

Microscopic Sort and Pick (SRI International)

Example technology - Draper fragility

Goal: design and develop a high-yield, low cost architecture for the fabrication, testing, and packaging of ultra-thin (<10µm) dielets with engineered fragility

Carrier wafer with etched cavities under individual dielets

Video not included here

Perspective View (10,000x)

G. Perlin, et al.

Images courtesy of Draper Laboratories

Fab-of-Origin (ClearMark, Chromologic, IC Forensics)

- Fab-of-Origin looks for fab-signatures to identify origin of a component
- Idiosyncrasies associated with fab-specific tooling, recipe, sequence
- Needed to trace DoD, non-DoD clones and counterfeits to originating foundry (Smart Grid, Cyber Systems, Communications, etc...)

MTO SBIR SB133-03: Fab of Origin

http://mediad.publicbroadcasting.net/p/innovationtrail/files/201301/IMG_0362.JPG

http://www.turbosquid.com/3d-models/c4d-factory-smoke/229722

Once SHIELD determines a chip to be a counterfeit, Fab-of-Origin will provide the insight needed to identify where it was made.

Thinking "outside the box" Determining Fab-of-Origin

Two parts, marked by different laser tools in the same facility

Images compliments of Clearmark, Inc.

What characterizes the circuit layout of an ASIC?

Image courtesy of Air Force Research Laboratory

Medium is (M1) metallization patterns in SEM image tiles

Basis patterns are *unknown* cell designs from the standard library for the foundry

Image courtesy of Clearmark Systems

The layout information is contained in the line drawing of the patterns

