Team #4: Mechanical Parts

Team Leads:

Dr. Kenneth Sullivan, Micro Craft, Inc.

Lt. Col Patrick Holland, USAF-TRANSCOM*

Ms. Susan Ebner

Maj. Bruce Hatlem*

Mr. Tony Hines

Ms. Jennifer Pannocchia

Mr. Chris Peters*

Col. Ron Robinson*

Jason Rushton*

Ruben Vasquez*

4. Mechanical Parts: Scenario Description

- POTUS just announced a revised Afghanistan strategy for deploying 30,000 additional troops to the region
- As a result, the Army is planning to deploy two additional Infantry Brigade Combat Teams (IBCTs) with approximately 4,500 personnel and equipment along with:
 - 600 HMMWV variants (e.g. M1141s, M1151, M1152s)
 - 120 Blackhawks
 - 200 Chinooks
 - 100 Apache helicopters.
- In order to enable campaign's momentum along with continuing to strengthen and build partnerships, the decision was made to deploy the two BCTs...ASAP!

So what do we do?

4. Mechanical Parts: Caveats

Armament

- However, a majority of the HMMWV variants require armor upgrades to the turrets and doors along with installation of latest Counter-IED system
- Upon arrival in country, IBCTs will be directed to proceed to their onward movement and integration location throughout the Combined/Joint Operations Area. Once the BCTs arrived at the designated location, the Task Force Commander will employ immediately
- Because of the increasing IED threat, the HMMWV upgrades must take place also

Aviation

- Aircraft are available along with critical spares for this mission; however, it depletes all critical spares in region.
- In order to replenish the critical spares in the region, 50% of critical items in Europe and North America will be taken to zero levels (no safety stock)
- In order to replenish the critical spares in Europe and North America, the DoD releases a \$1 billion worth of orders to the prime contractors to manufacture those parts. Considerations:
 - Seventy (70) percent of the parts are not manufactured by the primes
 - Ninety (90) percent of the parts manufactured by the supply chain have not been purchased in ten years.
 - DoD wants safety levels replenished in Europe and North America ASAP (preferably within six months)

Apply SCRM process principles (identify, assess, mitigate, and manage) to answer the question: How can the DoD & Industry better plan for sustainment during Acquisition phase?

- 1. What are the sustainment risks/issues associated with your scenario? (List in priority of severity)
- 2. What proactive sustainment activities would help mitigate risks or resolve issues?
- 3. For each proactive sustainment activity:
 - a) List the information you need during Acquisition phase to plan for sustainment.
 - b) List any anticipated systemic constraints or barriers.
 - c) Describe how can you can maintain accurate information throughout the system lifecycle?
- 4. What are the differences in the way we treat repairable versus consumable items?
- 5. What are the differences in the way we treat systems that are already in Sustainment phases?

1. What are the sustainment risks/issues associated with your scenario? (List in priority of severity)

HMMWV/Counter IED

- 1. Need to know the usage demand/requirements
- 2. Funding availability, timing and procurement process
- 3. What is the prioritization of upgrades?
- 4. Are there kits available for purchase or must they be built? (assume the IP exists for kits)
- 5. Is in-house installation capability available or does it have to be outsourced?
- 6. Where is it put on the HMMWV?
- 7. How do we get the kits into the theatre?
- 8. DPAS?

- 1. What are the sustainment risks/issues associated with your scenario? (List in priority of severity)
- Aviation (funding is available)
 - 1. Are qualified suppliers available?
 - 2. How long will it take to ramp up production?
 - 3. Is raw material available?
 - 4. Is tech data available? Manpower? Tooling?
 - 5. Contracts exist?
 - 6. DPAS honored?
 - 7. Chain of custody?

2. What proactive sustainment activities would help mitigate risks or resolve issues?

- HMMWV/Counter IED/Aviation
 - Keep prefab kits on hand or access to the IP
 - Keep the industrial base warm/incentivized
 - Government/OEM must know their supply chain
 - Modify the production/ supply chain process
 - Identify critical items and their ability to be produce
 - Identify process and product owners
 - DPAS implemented

3a. For each proactive sustainment activity:

- a) List the information you need during Acquisition phase to plan for sustainment.
- b) List any anticipated systemic constraints or barriers.
- c) Describe how can you can maintain accurate information throughout the system lifecycle?
- Know tech data, requirements (DTLOMPS-F), funding, time frame
- Prioritization and missions
- Design robustness in to the supply chain

3b. For each proactive sustainment activity:

- a) List the information you need during Acquisition phase to plan for sustainment.
- b) List any anticipated systemic constraints or barriers.
- C) Describe how can you can maintain accurate information throughout the system lifecycle?
- New missions/threats
- Shortage of material, sources and manpower (attrition) - DMSMS
- Budget/funding constraints
- Proprietary information
- Facility availability
- Priorities/DPAS

3c. For each proactive sustainment activity:

- a) List the information you need during Acquisition phase to plan for sustainment.
- b) List any anticipated systemic constraints or barriers.
- c) Describe how can you can maintain accurate information throughout the system lifecycle?
- Plan for extended life cycles
- Plan for interoperability
- Plan for tech insertion and product improvement
- Communication/IT
- Item (life-cycle) managers that are responsible for sustainment
- Create a collaborative environment that is supported by contracts

- 4. What are the differences in the way we treat repairable versus consumable items?
- Consumables may have a short life-cycle
- Repairables have a managed life-cycle
- Do we need to move towards more consumables
- Funding for repairables is handled differently
- Two different supply chains
- Repairables have more IP issues

- 5. What are the differences in the way we treat systems that are already in Sustainment phases?
- Do not adequately plan or fund for sustainment
- Organizations may change from production to sustainment
- Manage readiness for sustainment phase
- Manage priorities in sustainment phase
- No aggressive incentive to improve
- Loss of engineering support in the sustainment phase

Team Summary & Insights

- Intellectual property access is an issue
- Priorities must be determined and maintained
- Surge and sustainment need to be established
- Need to incentivize industry to stay in DIB and warm
- Implement DPAS in the DIB
- Incentivize industry to actively manage the lifecycle
 - Cost reduction
 - Performance improvements

Appendix 1:

October 2015 Workshop Findings

- Sound decisions are impeded by lack of supply chain visibility;
- Total supply chain mapping early in process could facilitate better decisions;
- Supply chain ownership changes throughout process and is not clearly defined, nor is the decision authority;
- Technical data package ownership should be addressed in program's initial acquisition plan but may not need to be purchased in the initial phase;
- Flexibility is constrained by available suppliers with proper credentials, but supplier qualification is beneficial even if it results in reducing the supplier pool;
- Malicious actions against the supply chain need to be considered as part of acquisition plan;
- Partnerships reduce risk and cost but must be carefully constructed early in process; and,
- Effective decisions should be made on a cost-benefit outcome, and should be added to our next workshop.