Trusted Microelectronic Investment Strategy

Dr. Jeremy Muldavin, DASD(SE)
August 16, 2016
Outline

• State of advanced microelectronics for DoD applications
• Strategy to assure access for the DoD
 – Need access to state-of-the-art integrated circuits (ICs) while maintaining an acceptable level of risk
 – New Trust and Assurance approaches to expand fabrication access
 – We want to maintain the U.S. technological and competitive edge in microelectronics
• Partnership opportunities
• Questions
Microelectronics Trends

State-of-the-art Devices
- Deeply-Scaled Silicon ICs (14nm)
- 2.5 & 3D ICs
- Heterogeneous System-on-Chip (SoC) ICs
- Flexible and miniature packaging
- Accelerator and SoC architectures

Increasing Cost and Complexity
- $5-15B for a modern fabrication facility
- >$500M for a new commercial smart phone SoC development
- Reliance on third-party Intellectual Property (IP)

Globalization and Commercial Dominance
- State-of-the-art fabrication consolidation
- Commercially-driven (DoD <1% of market)
- Complex global supply chain
- China investing heavily ($150B)

New Applications
- Internet of Things
- Big Data systems
- Autonomous systems
- Spectral and spatial communication agility
Commercial Computing Trends

Global mobile computing and wireless infrastructure brings powerful capabilities to nearly everyone.

Cloud computing and infrastructure

Internet of Things and Software Defined Radio

Mobile computing

Commercial SoC for mobile applications

Location
GPS, GLONASS, Beidou, Galileo Satellites

Cortex-A57 & Cortex-A53 CPUs

Memory
LPDDR4

Hexagon DSP
Ultra Low Power Sensor Engine

Display Processing
4K, Miracast, picture enhancement

SoCs with custom accelerators enable size, weight and power (SWaP)-efficient mobile applications and servers

Powerful test and measurement

Commercial Computing Trends

Commercial SoC for mobile applications

Location
GPS, GLONASS, Beidou, Galileo Satellites

Cortex-A57 & Cortex-A53 CPUs

Memory
LPDDR4

Hexagon DSP
Ultra Low Power Sensor Engine

Display Processing
4K, Miracast, picture enhancement

Modem
4th gen CAT 6 LTE
Up to 3x20MHz CA

USB
3.0

Multimedia Processing
4K Encode/Decode
Snapdragon Voice Activation
Gestures
Studio Access Security

USB
3.0

Multimedia Processing
4K Encode/Decode
Snapdragon Voice Activation
Gestures
Studio Access Security

Mobile computing

Internet of Things and Software Defined Radio

Cloud computing and infrastructure

Commercial SoC for mobile applications

Location
GPS, GLONASS, Beidou, Galileo Satellites

Cortex-A57 & Cortex-A53 CPUs

Memory
LPDDR4

Hexagon DSP
Ultra Low Power Sensor Engine

Display Processing
4K, Miracast, picture enhancement

Modem
4th gen CAT 6 LTE
Up to 3x20MHz CA

USB
3.0

Multimedia Processing
4K Encode/Decode
Snapdragon Voice Activation
Gestures
Studio Access Security

Powerful test and measurement

Global mobile computing and wireless infrastructure brings powerful capabilities to nearly everyone.

SoCs with custom accelerators enable size, weight and power (SWaP)-efficient mobile applications and servers
Future Warfighting Systems

System of Systems

Autonomous and collaborative

Miniature and swarming

Cyber and social

Human and robot collaboration

Diverse protected links

Decentralized systems

Human and autonomous systems

Information microsystems

Leverage global technology and infrastructure
Needs for Innovation in DoD Computing

Challenges
- Parallelism and reduced efficiency of CPUs
- High cost and acquisition time
- Flexibility and sustainment for DoD applications
- Security and trust in global environment

Needs
- Big Data and small platforms
- Contested environment computing
- Systems of Systems and autonomy
- Cyber Protection and security

- Artificial Intelligence (AI) and Graph Processors
- High Dynamic Range Flexible Radios and Digital Equalization
- Autonomy Open Architecture
- Assurance and Supply Chain Integrity

- Forward Deployed PED and Miniature Sensor Systems
- Heterogeneous SoCs
- Vision and Precision Navigation and Timing (PNT) processing
- Cryptographic Key Management
Electronics as a Strategic Issue

Current Tactical Issue

DoD Trusted Electronics Issue
- Options for domestic trusted manufacture of custom DoD electronics are diminishing

COTs Electronics Trust (DoD & Beyond†)
- Most COTs electronics used in DoD systems are fabricated overseas; significant risk from tamper
- Risks similar for the broader national security community, banking, critical infrastructure, etc.

Access to Electronics / Electronics based economic growth
- Shift in electronics fabrication creates potential for overseas control
- End of Moore’s Law potential carries economic impacts

Significant electronics challenges represent a strategic level national issue

† Including the broader national security community, banking, critical infrastructure, commercial industry, etc.
Microelectronics Strategy Challenges

- **DoD-driven**
 - Availability concerns
 - Yield and complexity challenges
 - Specialized IP needed
 - $$ to maintain

- **Commercially-driven**
 - Moderate volumes required
 - Some Trust and assurance challenges
 - Third-party IP necessary
 - $$$ to access

- **Legacy & Boutique**
 - Follows state-of-the-art (offshore) threatening DoD Subject Matter Expertise
 - Investing in assurance and beyond-Silicon components
 - Long-term impact on state-of-the-art

- **State-of-the-Art**
 - High volumes desired
 - Trust and assurance challenges
 - Third-party IP necessary
 - $$$ to access

- **Science & Technology**

Four Distinct Interrelated Domains
DoD Microelectronics Goals

- DoD can lower barriers to safely access and develop advanced semiconductor-based systems to address new threats.

- DoD can leverage an assured global supply and partners in U.S. semiconductor industry generate a competitive advantage for new markets through enhanced assurance practices.

- Legacy and specialized microelectronics for DoD systems leverage increased assurance and expanded supply options through assurance and systems engineering.
Systems Engineering Approach

Program development and capabilities → PPP/CPI → Design → Verify → Mask → Fabrication → Pack. and test → Verify and validate → Config. prog. SW → Integrate and test → Operation and maint.

- Quality Escape
- Malicious Insertion
- Info. Loss
- Quality Escape
- Counterfeit & Excess
- Rev. Eng.
- Quality Escape
- Malicious Insertion
- Rev. Eng.
- Info. Loss

PPP/ Assured Design System Security Architecture

Op. Sec. & Anti Tamper

- HWA
- SWA

Innovators and Developers
- System architects
- R&D engineers
- Acquisition experts
- Manufacturing experts

Efficacy

Mitigation

JFAC & Industry

Impact

Adopters & Improvers
- System Integrators
- Test and validation
- Operators and Maintainers

NDIA Trusted Foundry Brief
08/16/16 Page-10

Distribution Statement A – Approved for public release by DOPSR; SR# 15-S-1541 applies. Distribution is unlimited.
What We are Doing

Policy
- DoD Instruction (DoDI) 5000.02
- Program Protection Plan (PPP)
- International Traffic in Arms Regulations (ITAR) update (in work)

Joint Federated Assurance Center
- Software assurance knowledge & tools
- Hardware assurance knowledge & tools
- Advanced verification & validation capabilities

Trusted & Assured Microelectronics
- Access to state-of-the-art foundries
- Trust and assurance methods and demonstration
- Industrial best practices for assurance

COTS and FGPA
- Supply chain risk management
- FPGA Assurance Study
- Radiation hardened microelectronics initiative
Program Protection Planning Policy

- System Security Engineering is accomplished in the DoD through PPP

- DoDI 5000.02 requires program managers to employ system security engineering practices and prepare a PPP to manage the security risks to Critical Program Information, mission-critical functions and information

- Program managers will describe in their PPP:
 - Critical Program Information, mission-critical functions and critical components, and information security threats and vulnerabilities
 - Plans to apply countermeasures to mitigate associated risks:
 - Supply Chain Risk Management
 - Hardware and software assurance
 - Plans for exportability and potential foreign involvement
 - The Cybersecurity Strategy and Anti-Tamper plan are included
JFAC

• JFAC is a federation of DoD SwA and HwA capabilities and capacities
 – To support programs in addressing current and emerging threats and vulnerabilities
 – To facilitate collaboration across the Department and throughout the lifecycle of acquisition programs
 – To maximize use of available resources
 – To assess and recommend capability and capacity gaps to resource

• Innovation of software and hardware inspection, detection, analysis, risk assessment, and remediation tools and techniques to mitigate risk of malicious insertion
 – R&D is key component of JFAC operations
 – Focus on improving tools, techniques, and procedures for SwA and HwA to support programs

• Federated Organizations
 – Army, Navy, AF, NSA, DMEA DISA, NRO, and MDA laboratories and engineering support organizations; Intelligence Community and Department of Energy

The mission of JFAC is to support programs with SwA and HwA needs
Trusted Foundry Long-Term Strategy

Program goals:
- Protect microelectronic designs and IP from espionage and manipulation
- Advance DoD hardware analysis capability and commercial design standards, e.g., physical, functional, and design verification and validation
- Mature and transition new microelectronics trust model that leverages commercial state-of-the-art capabilities and ensures future access

Technical challenges:
- Develop alternate trusted photomask capability to preserve long-term trusted access and protection of IP
- Scale/enhance the government’s ability to detect security flaws in ICs
- Leverage academic and industry research for assuring trust from any supplier

Program partners:
- DoD science & technology (S&T), acquisition communities, academia, and industry

Provides technical solutions that can be leveraged by government and industry to enable microelectronics assurance
Long-Term Strategy Time Line

DoD Trusted Foundry Program Consolidation - Defense Microelectronics Activity (DMEA)

Transition → Newly Established Trusted Foundry Contract

Sustained Network of Trusted Certified Suppliers

Trusted and Assured Microelectronics Program:

Alternate Source for Trusted Photomasks
- **Preparation activities**: Improve capabilities and capacity, and provide support to program needs, for analysis of microelectronics trust
- **Capability Development**: Identify and develop standards, practices, and partnerships to improve availability of trust from commercial providers
- **Deploy new capability**

Verification and Validation (V&V) Capabilities and Standards for Trust
- **Preparation activities**: Capability development and demonstration
- **Deploy new capabilities**

Advanced Technology and Alternative Techniques for Microelectronics Hardware Trust
- **Preparation activities**: Capability development and demonstration
- **Deploy new capabilities**

|------|------|------|------|------|------|------|------|------|------|------|
DMEA is responsible for assuring the access to microelectronics for critical DoD systems

DoD Instruction 5200.44 requires that;

- “In applicable systems, integrated circuit-related products and services shall be procured from a trusted supplier accredited by the Defense Microelectronics Activity (DMEA) when they are custom-designed, custom-manufactured, or tailored for a specific DoD military end use (generally referred to as application-specific integrated circuits (ASICs))."

Holds Trusted Foundry licensing agreements (transferred from NSA) with ~70 foundries and suppliers

Pursuing new Trust and Assurance accreditation instruments to broaden access and encourage industry best practices
Trusted Foundry Program at DMEA

- Trusted Foundry program has broad participation and covers a wide range of semiconductor technologies and process nodes

(http://www.dmea.osd.mil/otherdocs/AccreditedSuppliers.pdf)
Alternate Source for Trusted Photomasks

- Develop second leading-edge Trusted photomask shop
 - Trusted flow in data preparation and manufacturing designs needed to manage risk of IP theft and malicious alteration
 - GlobalFoundries currently only source of Trusted leading-edge masks
 - A second leading-edge source will ensure tape-in/mask release, mask manufacturing, and authentication process
 - Goal is to have secure, SECRET-level capabilities with a photomask supplier who has business relationships with leading-edge foundries
Microelectronics Trust Verification Technologies

- **Verification needed when Trusted Foundry not available**
 - DoD formed JFAC to provide this service
 - Long-term challenge to analyze leading-edge ICs and scale up capacity

Design Verification
- Verification/assurance of designs, IP, netlists, bit-streams, firmware, etc.

Physical Verification
- Destructive analysis of ICs and Printed Circuit Boards

Functional Verification
- Non-destructive screening and verification of select ICs

DoD, Intelligence Community, and DoE enhancing capability to meet future demand
Microelectronics Assurance
Industrial Best Practices

• Need industry-wide standards for assurance and security throughout the microelectronics supply chain
 – Leverage efforts by the electronic design automation (EDA), manufacturer, integrator, and other vendor communities to develop security in an open architecture
 – Use government, industry, and academic threat and vulnerability resources to ensure security being developed is adequate for the threat
 – Who else should care about this?
 – Bio-tech community
 – Autonomy and AI community
 – Internet of Things and cloud computing providers
 – What are the benefits?
 – DoD leverages rapid innovation, ability to upgrade, and adapt to threats
 – Assurance for consumers through tracking, authentication, observability, etc., for next generation systems

Assurance as a competitive advantage in new markets
Design for trust
• Designing techniques to limit full use/functionality to trusted operation

IP protection
• Preventing exploitation, including control of use, concealment, reconfiguring, partitioning, or employment

Low-volume/high-mix production
• Innovative methods to permit cost-effective, Trusted and assured low volume manufacturing of state-of-the-art ICs

Electronic component markers
• Tagging/mark ing ICs and subassemblies to authenticate and track supply chain movements

Imaging technologies and forensics
• Advanced capabilities to efficiently evaluate dense, state-of-the-art commercial components

Implement and demonstrate assurance capability with transition partners
Partner Efforts in Trust and Assurance

DARPA and IARPA are critical partners in development and transition
Assurance Strategy for FPGAs

- **FY 2016 goals for this effort:**
 - Produce a coherent, focused strategy/plan for FPGA assurance
 - Leverage existing USG and industry efforts to the maximum extent possible
 - Promote community awareness of related USG efforts via a series of workshops and conference calls sponsored by OASD(R&E), in coordination with the JFAC, National Security Agency (NSA), and Sandia National Laboratories (SNL)
 - As a community, identify the portfolio of related efforts on which we should focus with the goal of synchronizing and eliminating stove-pipes and separate, single-point solutions when possible
 - Identify gaps and/or activities requiring investment and elevate relevant needs to the JFAC Steering Committee (SC) for prioritization and direction regarding resourcing
 - In particular, align with, and inform, the execution plan for the Trusted Foundry Long-Term Strategy
Many stakeholders are involved in the success of the long-term strategy:

– Leadership from OSD, Services, and agencies
– Performers including NSWC Crane, DMEA, DARPA, and other DoD S&T organizations and laboratories
– Integration and support of functions of:
 – DoD Trusted Foundry Program
 – DMEA Trusted Supplier Accreditation Program
 – JFAC
 – Microelectronics trust S&T and transition activities
– Coordination with other U.S. Government agency partners
– Building and leveraging partnerships with Defense and commercial industry and academia

Bottom line – structuring activities to meet acquisition program needs for trust and access to state-of-the-art microelectronics
The Way Ahead

- **Program engagement**
 - Foster early planning for HwA and SwA, design with security in mind
 - Implement expectations in plans and on contract
 - Support vulnerability analysis and mitigation needs

- **Community collaboration**
 - Achieve a networked capability to support DoD needs: shared practices, knowledgeable experts, and facilities to address malicious supply chain risk

- **Industry engagement**
 - Communicate strategy to tool developers
 - Develop standards for common articulation of vulnerabilities and weaknesses, capabilities and countermeasures

- **Advocate for R&D**
 - HwA and SwA tools and practices
 - Strategy for trusted microelectronics that evolves with the commercial sector

- **People!**
 - Improve awareness, expertise to design and deliver trusted systems
Opportunities to Contribute

• Engage with industry to help identify and implement Industry best practices and standards for security and assurance
 – Requests for Information and Broad Agency Announcements to follow)

• Identify ASIC needs and program transition opportunities for U.S. Government applications

• Leverage and contribute to JFAC to discover and inform the wider community about threats and mitigation tools

• Look for upcoming workshops on FPGA Assurance
Questions
Defense Innovation Marketplace
http://www.defenseinnovationmarketplace.mil

DASD, Systems Engineering
http://www.acq.osd.mil/se

Twitter: @DoDInnovation
Trusted Foundry Long-Term Strategy Management Model

Based on JFAC Hardware Assurance Gap Analysis and Program Needs