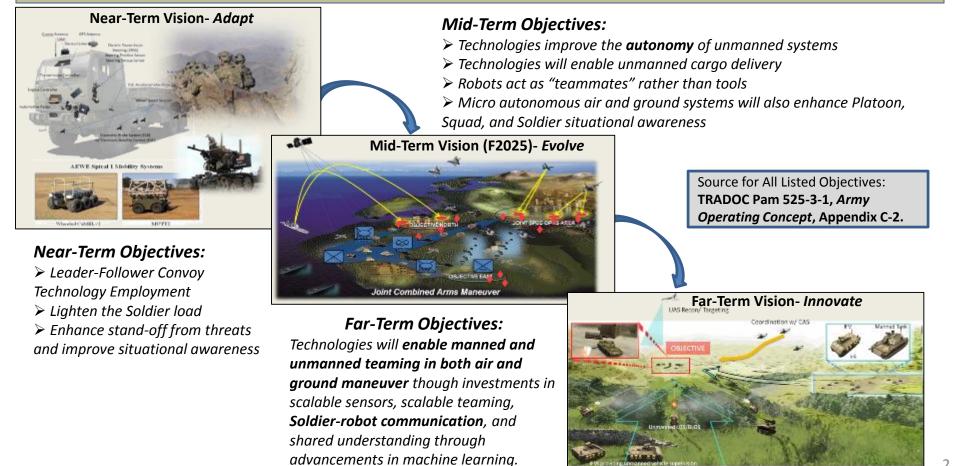
PROJECT MANAGER FORCE PROJECTION

Robotics Portfolio Overview to NDIA Robotics Division 25 AUG 15

Bryan J. McVeigh PM Force Projection

FCT

PRO


PD TMDE

MAN

Framing the Army's Draft Robotic and Autonomous Systems (RAS) Plan

As the Army articulates RAS integration across multiple Warfighting Functions, this vision must also show *realistic objectives* in the **near-term**, *feasible objectives* in the **mid-term**, and *visionary objectives* for the **far-term**. Beginning with near-term objectives, each successive phase links its objectives to and builds from the achievements of the previous phase.

- Evolutionary approach toward delivering autonomy enabled Warfighter capabilities to reduce operational risk
- Technology (software & hardware) enhancements are seamless & affordable to field standoff capability & intelligence to existing systems
- Deliberate management of program risk
- Affordable & timely programs
- Modular, open architecture design philosophy
- Innovative industrial base & acquisition environment

5 (35)

PEO CS&CSS Robotics Overview

MTRS Inc II Base and Payload Configuration

Autonomous Mine Detection System CDD, MTRS Inc II CPD 15 May 2013 Independent CARDS #06061, (9 JUL 09) (Payload) Manipulator Fiber Optic Optics Radios Engineers PdM Counter Explosive Hazard, (PEO Ammo) **Common Payloads (All Users)** PdM Unmanned Ground Vehicles EOD Payloads (for MK2) EOD (PEO CS&CSS) Single-Shot Disrupter **Firing Circuit CBRN Sensors for Application on Unmanned** Systems ICD, 23 FEB 06, CARDS #028-06 (Payload) **CBRN Sensors Base Platform IOP V1.0 Compliant** FirstDefender RMX **Robotic Deployment System PM Assured Mobility Systems CBRN Payloads (Chemical Units)** JPM Nuclear Biological Chemical (PEO Joint Bio Chem Defense)

MTRS Inc II RFP release targeted for 2nd QTR 2016

Route Clearance & Interrogation System Capability Overview

- Route Clearance & Interrogation System (RCIS) CPD consists of two capabilities that are unmanned, semi-autonomously controlled, highly mobile platforms to support Route Clearance Platoons and the BCTs.
- RCIS Type I:
 - Optionally manned or unmanned
 - High Mobility Engineering Excavator (HMEE) capable of enabling Soldiers to semiautonomously interrogate, excavate, and classify deep buried explosive hazards, IEDs, and caches.
- RCIS Type II to follow, leveraging technology and architecture from the RCIS Type 1 program

RCIS Type 1 RFP release targeted for 3rd QTR 2016

MPCV

Type I: HMEE-I

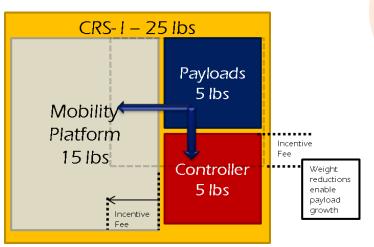
Semi-Autonomous Control

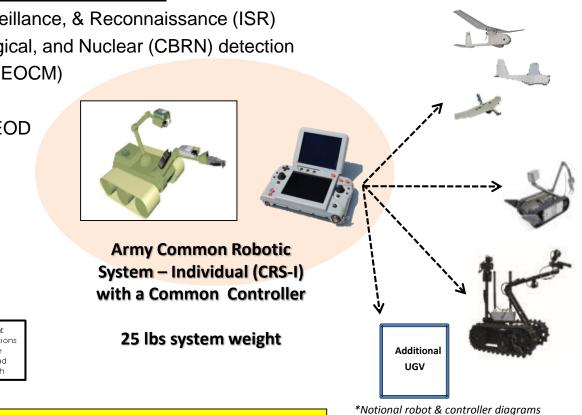
RCIS TYPE 1

RCIS TYPE 2 (Future Effort)

MMPV

MMPV Type II




Semi-Autonomous Control

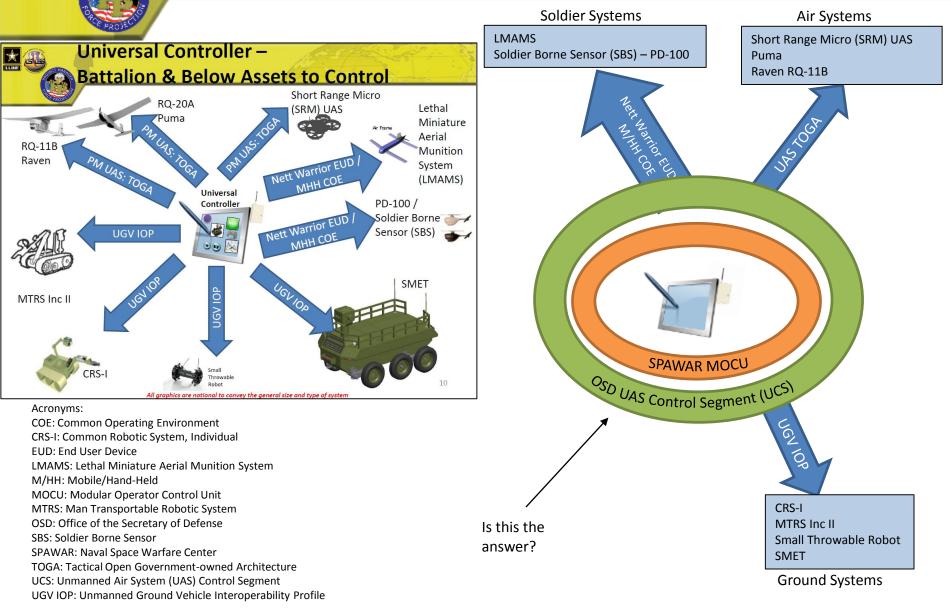
<u>System Description</u>: A man-packable (< 25lbs), miniature, highly mobile, unmanned robotic system with advanced sensors and mission modules for dismounted forces. Designed so that operators can quickly reconfigure for various missions by adding/removing modules and/or payloads. CRS-I will include a Common Controller.

Addresses the Following Operational Capabilities Gaps:

- Standoff short range Intelligence, Surveillance, & Reconnaissance (ISR)
- Remote Chemical, Biological, Radiological, and Nuclear (CBRN) detection
- Explosive Obstacle Counter Measure (EOCM)
- Explosive Ordnance Disposal (EOD)
- Future Users: Engineer, CBRN, INF, EOD

RFP release targeted for 1st QTR 2017

- How do we support different radios?
- How do we support different control standards?
- How do we minimize controller weight?
- How do we optimize between optimal control of each system & user interface commonality?



- Vision: controller(s) optimized in terms of the following characteristics:
 - Weight
 - Open Architecture
 - Ergonomics
 - Extensibility & Commonality
 - Cybersecurity
 - Application Based
 - Supportability & Maintainability


Need industry's help in making this a reality

Universal Controller – Initial Concepts

RLSC Directed Requirement Portfolio

Director Robotic Logistics Support Center				
Non Standard Robots	O&S			
Man Transportable Robotic System (MTRS) MKII	O&S			
Man Transportable Robotic System (MTRS) MKII Recap	O&S			

Non-Standard Robots

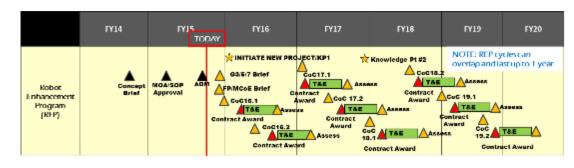
Talon IIIB	Talon IV	PacBot 510 FASTAC	SUGV 310 Mini-EOD	Dragon Runner	First Look
N	N.	S	S.	B	2

MTRS EOD Robots

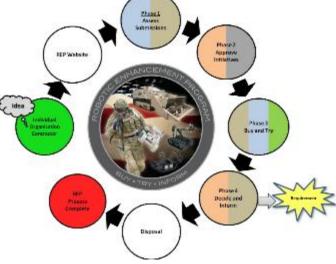
MKII MOD0	MKII MOD1	MKII MOD2	MKI MOD0	MKI MOD I	MK5
-			N	H.	A CAN

Robotic Enhancement Program (REP)

Problem: Robotic technology is rapidly evolving. The standard requirements/acquisition timeline of 3 to 7 years increases the risk that robotic systems will be obsolete before it is fielded or more likely, before it even reaches Initial Operational Capability (IOC).


Mitigation: Evaluate small quantities of state-of-the-art robotic systems and/or payloads to inform the requirement and acquisition process.

Concept:


- Concept based off of Solider Enhancement Program
- REP is a special project (not a full life cycle acquisition program)
- Uses a "buy-try-inform" methodology to better inform future Army requirements

Experiment Focus:

- Protect the Force
- Reduce Warfighter's Workload
- Enable Situational Awareness
- Sustain the Force
- Enable lethal and Non-lethal Engagements
- Reduce Cost

http://www.peocscss.army.mil/rep.html

Emerging Requirements

6

U.S.ARNY

Squad-Multipurpose Equipment Transport (S-MET)

The S-MET should be capable of operating in three control regimes; tele-operation, semi-autonomous and autonomous. Semi- autonomous navigation will include wireless leader/ follower and waypoint navigation. The speed of the S-MET will allow for the squad to maintain its momentum during all operations.

Operational Concept

	SMET	L	М	S
Capacity		1000 lbs.	600 lbs.	300 lbs.
Range	On-road	250 km	100 km	50km
	Xcountry	125 km	60 km	30 km

Mission

The S-MET will lighten Warfighter's load and sustain the force during ops. The S-MET will maneuver with the dismounted force and enable Warfighters to conduct continuous ops without the individual Warfighter carrying equipment required to conduct 96 hours of dismounted operations.

PLS A1 Leader Follower - Overview

By Wire and Active Safety

Required Upgrades (By Wire)

- Steering
- Braking
- Dashboard
- Data Buses (I/O)

Required Upgrades (Active Safety)

- In-cab Camera (Bridge to ACO)
- Temperature Sensor
- Rain Sensor
- GPS and base maps (Bridge to ACO)
- DSRC (Bridge to ACO)
- Rear and Side Radars
- Wheel Encoders
- Forward Radar
- Display

Leader Follower Robotic Capability

Required Upgrades (LF/Robotic)

- LIDAR
- Tactical Radio
- Navigation Solution
- Cameras
- UWB Radios
- Fiducial Markers
- Computers

Provides Leader Follower Unmanned Capability to the PLS A1 Vehicle


Automated Convoy Operations

Provides *optional* unmanned capability to *any* manned vehicle; from driver assist to automated driving and navigation

B-Kit

Vehicle Specific

Connectors

C-Kit

Modular Sensors

A-Kit

Universal Brain

PM Force Projection (FP) Mr. Bryan McVeigh bryan.j.mcveigh.civ@mail.mil

PdM Unmanned Ground Vehicles (UGV) Mr. Lou Anulare Iouis.a.anulare.civ@mail.mil PdM Applique & Large Unmanned Ground Systems (ALUGS) LTC Cory Berg <u>cory.n.berg.mil@mail.mil</u>

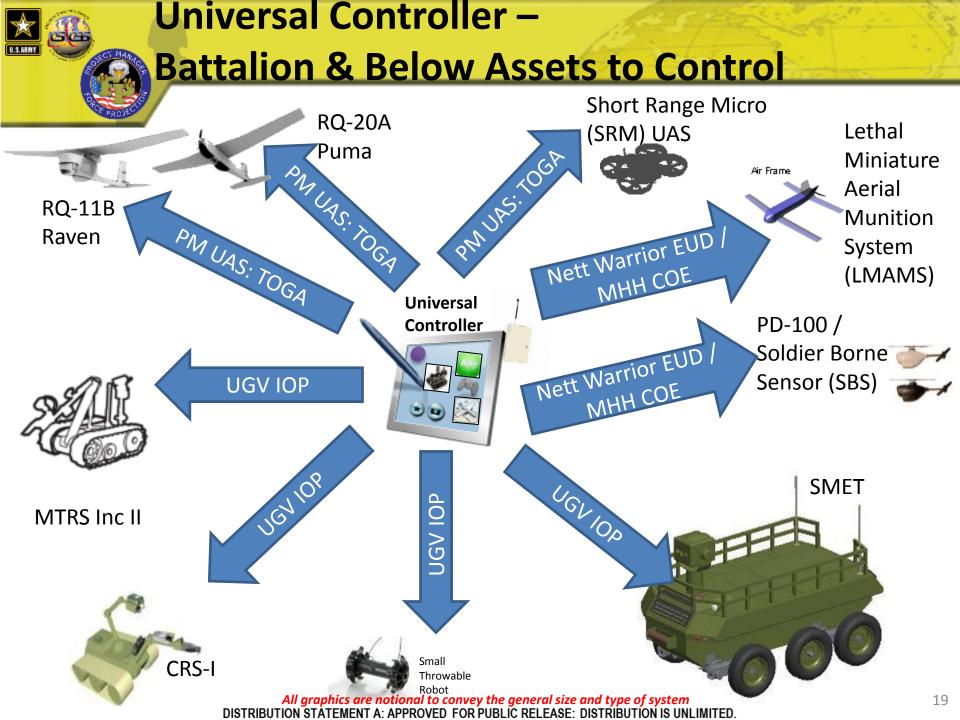
Robotic Enhancement Program (REP)

Mr. Jim Muldoon

James.p.muldoon3.civ@mail.mil

UGV IOP

Mr. Mark Mazzara


mark.a.mazzara.civ@mail.mil

Discussion Requirements

300

U.S.ARNY

