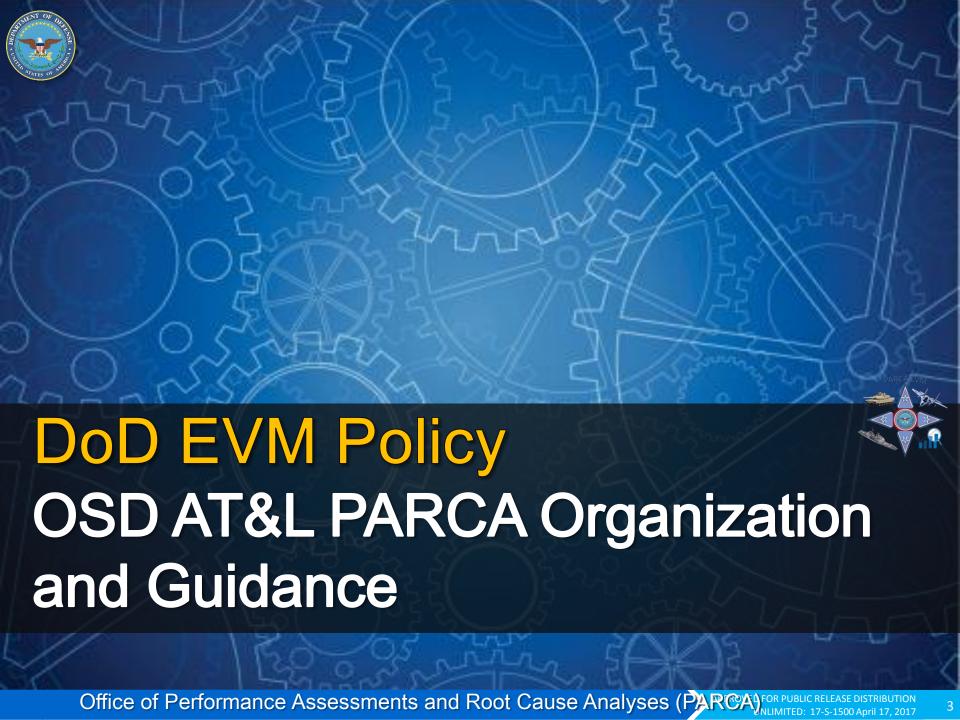


DoD EVM POLICY

Using EVM and Agile Together


Mr. John McGregor
PARCA Deputy Director for EVM

Today's List

- PARCA
- EVM and Agile Questions
- Managing the Work
- Recap

Director, Performance Assessments and Root Cause Analyses (PARCA) Mr. Gary R. Bliss

OSD EVM Policy Holder Nunn McCurdy Breach Analysis Program
Assessments
and DAES
Selection

Analysis Team

Mr. John McGregor

Deputy Director for Earned Value Management Mr. Dave Cadman

Deputy Director for Root Cause Analyses

Dr. Peter Eggan

Deputy Director for Performance Assessments Dr. Philip Anton

Deputy Director for Acquisition Policy Analysis Center

PARCA was brought into existence via the reforms in the Weapon Systems Acquisition Reform Act (WSARA) of 2009

PARCA EVM Division

The EVM Division of PARCA is responsible and accountable for EVM performance, oversight, and governance across the Department

Policy and Guidance

EVM Competency

Program Interface

EVM Central Repository

Communications and Outreach

Develop, publish, and maintain DOD policy and guidance on EVM

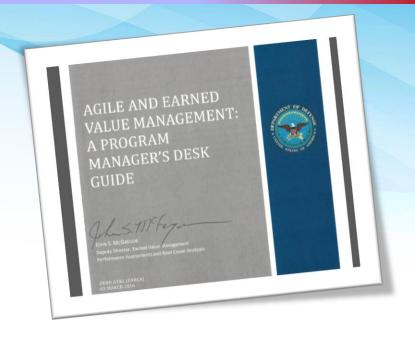
The United States of the Property of the Prope

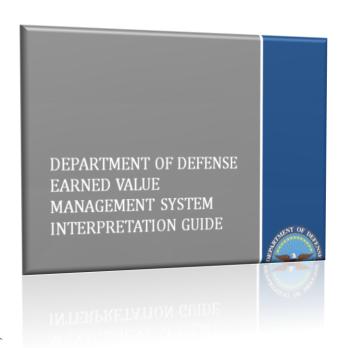
Serve as DoD EVM
Functional Lead to
influence EVM
competency
requirements;
Coordinate with
Defense Acquisition
University (DAU)

Review and approve
EVM data requirements
for MDAP programs in
coordination with
Services and Defense
Agencies;
Resolve interpretive
differences in EVM
policy, practice, and
requirements

Responsible for the Earned Value Mgt
Central Repository (CR) and maintenance of CR data alignment with the Acquisition
Visibility framework;
Report EVM data compliance, integrity, and quality to AT&L

Maintain communications with Government and Industry on EVM policy





DoD EVM Policy Guidance

Agile & EVM PM Desk Guide – Provides

overview of relationship between Agile and EVM in DoD

EVMS Interpretation Guide (EVMSIG)

Provides the overarching DoD interpretation of the 32 EVMS Guidelines

OMB Capital Programming Guide

▶ Update of OMB Capital Programming Guide provides link between EVM and Agile:

"EVM is not tied to any specific development methodology and does not prevent the use of other risk management techniques such as agile development. EVM and agile development are complementary and can be used on the same project. Agile development can be used to incrementally deliver functionality to the customer while EVM provides a standard method for measuring progress."

- ▶ How does an IBR differ when using Agile with EVM?
 - How does a PM determine if a baseline is achievable?
 - What are the key questions to ask?
- How are Agile metrics used to underpin EVM performance?
- ▶ How does Agile status manifest in performance status, analysis, and variance reporting?

Managing in an Agile Environment

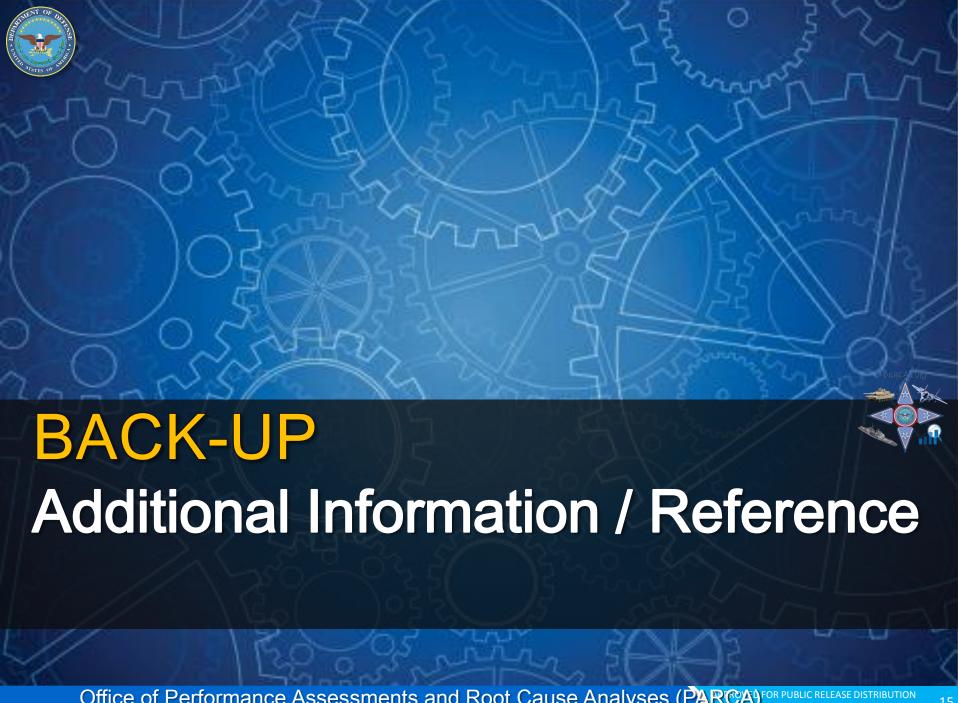
- ▶ How does program management change in an Agile environment?
- ▶ Has anyone worked on EVM and Agile on the same contract?
 - What are the benefits of using EVM in an Agile environment?
- ▶ What is the Government's role when Agile is implemented?
 - Are there any implications using EVM within an Agile environment that should be addressed in DoD EVM System or other Guidance?

- Organizing Develop and maintain relationship between Agile backlog and Work Breakdown Structure (WBS)
- ▶ Planning & Scheduling Planning and scheduling with Agile can align to EVM System guideline criteria; Agile underpins IMS
- ▶ Measuring Progress Agile system must support the EVMS, demonstrating that all objective technical completion criteria have been met
- **Baseline Maintenance** Agile product backlog, at the feature level (i.e., work package) or higher, have an assigned budget under baseline control

- ▶ EVM and Agile both support effective and proactive program management
- Planning, forecasting, and estimating are large parts of both disciplines
- ▶ Change control, while not identical between the disciplines, is crucial to the reliability of performance metrics
- ▶ Key is linkage with completion of technical criteria

Questions Contact Us

PARCA EVM Website:


http://www.acq.osd.mil/evm/

PARCA EVM Email: osd.dodevm@mail.mil

PARCA AEP Program

PARCA Acquisition Exchange Program (AEP) provides a unique career-development experience for high-caliber Government civilians or military personnel interested in acquisition and/or EVM.

http://www.acq.osd.mil/evm/aep.program.html

EVMS Guidelines

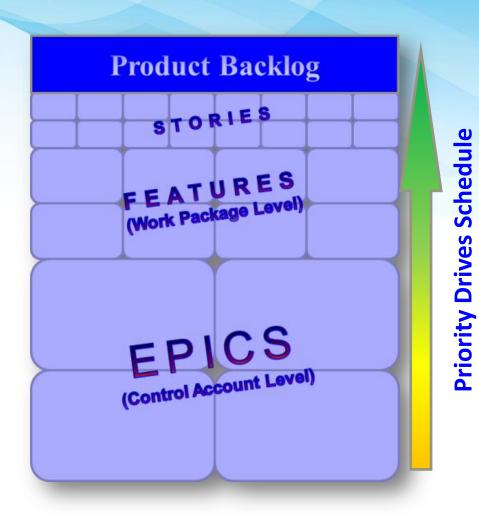
GL	GL Description	GL	GL Description
1	Define the Project Work Scope	17	Summarize direct costs by WBS elements
2	Define the Project Organization	18	Summarize direct costs by OBS elements
3	Integrate Subsidiary Processes	19	Record/allocate indirect costs
4	Identify Overhead Management	20	Identify unit and lot costs as needed
5	Integrate WBS/OBS to Create Control Accounts	21	Track and report material costs/quantities
6	Schedule with network logic	22	Calculate Schedule Variance & Cost Variance
7	Set measurement indicators	23	Identify significant variances for analysis
8	Establish the CBB/PMB	24	Analyze indirect Cost Variance
9	Budget by cost elements	25	Summarize information for management
10	Create work/planning packages	26	Implement corrective actions
11	Sum WP/PP budgets to the Control Account	27	Revise Estimate At Completion
12	Level of Effort planning	28	Incorporate changes in a timely manner
13	Set overhead budgets	29	Reconcile current to prior budgets
14	Identify MR and UB	30	Control retroactive changes
15	Reconcile CBB to target values	31	Prevent unauthorized revisions
16	Record direct costs	32	Document PMB changes

- ▶ There are many different implementations of Agile, so for ease of discussion the following terms will be used:
 - **Feature** A clearly defined technical work scope requirement of an Agile project. Features are decomposed by the development team into Stories
 - Stories Individual pieces of work scope that can be completed within a Sprint. Stories are defined by the development team as a result of the decomposition of Features.
 - **Sprint** A fixed time box for development which results in a working increment of software. Sprints are usually 2 to 4 weeks in duration.
 - **Story Points** A measure of a Story's estimated value as perceived by the development team. The number of Story Points is an abstraction of the effort, complexity, and risk of the Story.

Earned Value

Organizing the workscope & teams in a product oriented, hierarchical manner

Develop and maintain relationship between Agile backlog and Work Breakdown Structure (WBS)


Agile teams utilizing a product backlog

Definition of Work Scope

WBS#	WBS Description
1.0	Electronic System
1.1	Prime Mission Product (PMP)
1.1.1	PMP Subsystem
1.1.1.1	PMP Subsystem Hardware
1.1.1.2	PMP Subsystem Software Release
1.1.1.3	Subsystem Integration, Assembly, Test and Checkout
1.1.2	PMP Software Release
1.1.2.1	Software Product Engineering
1.1.2.2	Computer Software Configuration Item (CSCI)
1.1.2.3	Subsystem Integration, Assembly, Test and Checkout
1.1.3	PMP Integration, Assembly, Test and Checkout

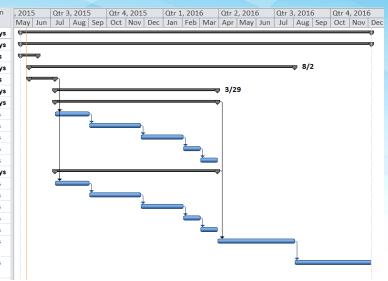
From Appendix B of MIL-STD-881C

Planning & Scheduling

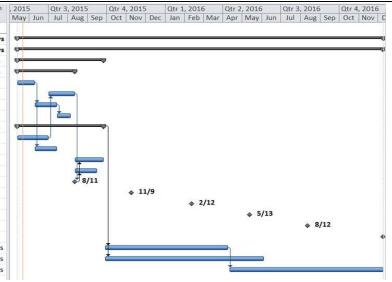
Earned Value

 Planning work in the baseline and IMS, timephased in a rolling-wave, 6 month window

Planning and scheduling with Agile can align to EVM System guideline criteria


 System requirements decomposed into capabilities, features, and stories thru sprints

Time Phasing and Rolling Wave Planning

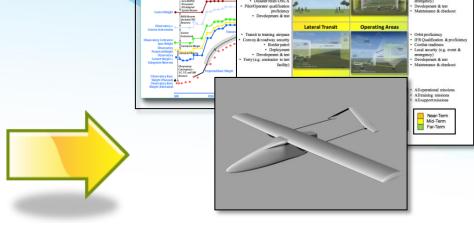

WBS#	WBS Description
1.0	Electronic System
1.1	Prime Mission Product (PMP)
1.1.1	PMP Subsystem
1.1.1.1	PMP Subsystem Hardware
1.1.1.2	PMP Subsystem Software Release
1.1.1.3	Subsystem Integration, Assembly, Test and Checkout
1.1.2	PMP Software Release
1.1.2.1	Software Product Engineering
1.1.2.2	Computer Software Configuration Item (CSCI)
1.1.2.3	Subsystem Integration, Assembly, Test and Checkout
1.1.3	PMP Integration, Assembly, Test and Checkout

WBS	Task Name	Duration
1	□ RiverSong System	410 days
1.1	☐ RiverSong Navigational System	410 days
1.1.1	■ RiverSong Navigational Subsystem	20 days
1.1.2	☐ RiverSong Navigational System Software	310 days
1.1.2.1	■ Software Product Engineering	30 days
1.1.2.2	■ Navigation CSCI	190 days
1.1.2.2.1	☐ CSCI Function 1	190 days
1.1.2.2.1.	Requirements Analysis	40 days
1.1.2.2.1.	Design	60 days
1.1.2.2.1.	Code	50 days
1.1.2.2.1.	Unit Test	20 days
1.1.2.2.1.	Integration	20 days
1.1.2.2.2	□ CSCI Function 2	190 days
1.1.2.2.2.	Requirements Analysis	40 days
1.1.2.2.2.	Design	60 days
1.1.2.2.2.	Code	50 days
1.1.2.2.2.	Unit Test	20 days
1.1.2.2.2.	Integration	20 days
1.1.2.3	.1.2.3 Navigation Software Integration, Assembly, & Test	
1.1.3	Navigational System Integration, Assembly, & Test, and Checkout	90 days

WBS	Task Name	Duration
1	□ RiverSong Software	413 days
1.1	RiverSong Navigational System	412 days
1.1.1	■ Navigational Subsystem 1	98 days
1.1.1.1	□ NavSys Epic 1	65 days
1.1.1.1.1	Feature 1	20 days
1.1.1.1.2	Feature 2	30 days
1.1.1.1.3	Feature 3	25 days
1.1.1.1.4	Feature 4	15 days
1.1.1.2	□ NavSys Epic 2	98 days
1.1.1.2.1	Feature 5	35 days
1.1.1.2.2	Feature 6	25 days
1.1.1.2.3	Feature 7	33 days
1.1.1.2.4	Feature 8	25 days
1.1.2	Release 1 Delivery	0 days
1.1.3	Release 2 Delivery	0 days
1.1.4	Release 3 Delivery	0 days
1.1.5	Release 4 Delivery	0 days
1.1.6	Release 5 Delivery	0 days
1.1.7	Release 6 Delivery	0 days
1.1.1.3	NavSys Epic 3 Planning Package	140 days
1.1.1.4	NavSys Epic 4 Planning Package	180 days
1.1.1.5	NavSys Epic 4 Planning Package	175 days

Earned Value

 Progress tied to scope completion based on quantifiable backup information/data


Agile system must support the EVMS, demonstrating that all objective technical completion criteria have been met

 Progress based on accomplishment of feature acceptance criteria

Task Completion and Measuring Progress

Task Completion

- Drawings Completed
- Lines of Code Written
- Work Products Produced
- Reviews completed

Agile is tailormade for measuring progress this way!

Measuring Design Fffectiveness

- Critical TPM Achievement
- System Capabilities Met
- Quality of Work Products
- System Under Review Acceptable

Progress is measured by effectiveness of outcomes to the end user

Baseline Maintenance

Earned Value

Changes follow rules for work authorization,
 baseline management, and change control

Agile product backlog, at the feature level (i.e., work package) or higher, have an assigned budget under baseline control

 Backlog maintenance is critical to the effective management of an Agile program

Change Control

Product Backlog Sprint 1 Sprint 2 Feature A Story 1A Story 1E Feature 1 is Story 1B Story 1F Feature 1 100% Feature B Story 1G Story 1C complete Story 1D Feature C Story 2D Story 2A Story 2D Stories A,B,C,E, Story 2B Story 2E and F completed; Feature 2 Feature E Story 2C Story 2F 2D and 2G Story 2D Story 2G returned to Story 2G Backlog

Fixed "time boxes" (i.e., Sprints)
force incomplete work to be put
back on the product backlog or
rolled over to next Sprint

 Forecasting and change control processes are required to maintain EVM baseline as items are returned to Product Backlog and used in subsequent Sprints