

Practical Software and Systems Measurement
Continuous Iterative Development

Measurement Framework
Part 3: Software Assurance and Technical Debt

Version 2.1

April 15, 2021

Developed and Published by Members of:

Practical Software &
Systems Measurement

National Defense Industrial
Association

International Council on
Systems Engineering

Product No.

PSM-2021-03-001
 Product No.

INCOSE-TP-2020-001-06

Editors:

Cheryl L. Jones
US Army

cheryl.l.jones128.civ@mail.mil

 Geoff Draper
L3Harris Technologies
geoff.draper@l3harris.com

Bill Golaz

Lockheed Martin
willliam.h.golaz@lmco.com

 Paul Janusz
US Army

paul.e.janusz.civ@mail.mil

Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

mailto:cheryl.l.jones128.civ@mail.mil
mailto:geoff.draper@l3harris.com
mailto:willliam.h.golaz@lmco.com
mailto:paul.e.janusz.civ@mail.mil

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 1 March 2021 Version: v2.0 i

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

PSM Product Number: PSM-2020-06-001
INCOSE Product Number: INCOSE-TP-2020-001-06

Copyright Notice:
For this document, each of the collaborative organizations listed on the cover page is the sole
manager of their products and services and are the only parties authorized to modify them. Since
this is a collaborative product, modifications are managed through the participation of all parties.

General Use: Permission to reproduce, use this document or parts thereof, and to prepare
derivative works from this document is granted, with attribution to PSM, NDIA, and INCOSE,
and the original author(s), provided this copyright notice is included with all reproductions and
derivative works.

Supplemental Materials: Additional materials may be added for tailoring or supplemental
purposes if the material developed separately is clearly indicated. A courtesy copy of additional
materials shall be forwarded to PSM (psm@psmsc.com, attention: Cheryl Jones). The
supplemental materials will remain the property of the author(s) and will not be distributed, but
will be coordinated with the other collaboration parties.

Author Use: Authors have full rights to use their contributions with credit to the technical source.

Supplemental Notice from INCOSE: This work is an Affiliate Product per INCOSE Policy TEC-
107 INCOSE Technical Product Development & Commercialization (26 October 2018). It is a
technical product developed outside the INCOSE product development process and was made by
INCOSE members in cooperation with PSM and NDIA; then approved by INCOSE to be
distributed from INCOSE central channels. The authors own the copyright and take primary
responsibility for proper branding, intellectual property, content quality and appropriate citations
with INCOSE oversight based on this policy & related procedure.

mailto:psm@psmsc.com

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 1 March 2021 Version: v2.0 ii

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CONTENTS

EXECUTIVE SUMMARY ... 1

CONTRIBUTORS ... 2

10. SOFTWARE ASSURANCE.. 3

10.1 SOFTWARE ASSURANCE TERMINOLOGY .. 4
10.2 IMPLEMENTATION CONSIDERATIONS FOR ASSURING SECURE RESILIENT PRODUCTS .. 5
10.3 SOFTWARE ASSURANCE MEASUREMENT .. 6

10.3.1 Software Assurance Measures .. 8

11. TECHNICAL DEBT... 10

11.1 TECHNICAL DEBT TERMINOLOGY .. 10
11.2 INFORMATION NEEDS ... 11
11.3 MEASURES FOR TECHNICAL DEBT ... 11
11.4 APPLYING THE PSM CID MEASUREMENT FRAMEWORK TO MANAGE TECHNICAL DEBT .. 12
11.5 TOOLS/METHODS ... 14

12. ICM TABLE .. 15

BIBLIOGRAPHY ... 23

LIST OF FIGURES

Figure 1: Alignment of PSM Software Assurance Measures with ISO/IEC 25000 standards for
quality characteristics.. 7

LIST OF TABLES

Table 1: PSM CID Measurement Framework Editors .. 2
Table 2: Part 3 Core Team Contributors and their Organization .. 2
Table 3: Software Assurance Terms and Definitions ... 5
Table 4: Recommendations for Initial Software Assurance Measures ... 9
Table 5: Applying PSM CID Measures to Manage Technical Debt .. 12
Table 6: Software Assurance Issues, Categories, and Measures .. 15

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 1

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

EXECUTIVE SUMMARY
This report provides recommendations for the measurement of continuous iterative developments
(CID). It includes a Practical Software and Systems Measurement (PSM) CID measurement
framework detailing common information needs and measures that are effective for evaluating
CID approaches. The information needs address the team, product, and enterprise perspectives to
provide insight and drive decision-making. The framework also identifies and specifies an initial
set of measures that have been identified as being practical measures to address these
information needs.
This guidance is intended to be used by team, program, and enterprise personnel who are
implementing CID approaches, as a reference for common, practical measures that can be
utilized. The measures a program or enterprise chooses to implement and collect will be tailored
based on alignment with its information needs and objectives, so they may differ from those
described here. The measures presented are intended to be tailored and adapted to the
development approach and environment.
Version 1.05 detailed potential information needs and measures that are common to CID
approaches, and an initial set of ten measurement specifications that were prioritized by user
surveys as highest value. This Version 2.1 includes added material that has been researched and
developed by the CID working group. The new materials include information on measuring:

• Product value (Part 2, section 8.11)
• Enterprise measurement (Part 2, section 9)
• Software assurance (Part 3, section 10)
• Technical debt (Part 3, section 11)

Part 1 of this report includes a series of diagrams and an ontology to describe the development
approaches and terminology used. It also includes an “Information Category-Measurable
Concept-Measures” (ICM) Table detailing potential information needs and measures for CID
developments. Additional potential measures will be added in future releases, as described in
Section 6, Next Steps.
For the highest priority measures, sample measurement specifications have been developed that
detail the identified measures. These are included in a separate Part 2 of the paper, along with a
discussion of how to use these measures for enterprise decision making. This addendum, Part 3
of the paper, separately extends the main CID paper with information and guidance on Software
Assurance and Technical Debt.
We invite your comments on this material, and your participation in future updates addressing
additional measures and guidance.
This report is intended to be methodology and approach-agnostic and is written so that it may be
adapted to organizational needs. Different methodologies and tools may use different
terminology than defined in this report.

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 2

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CONTRIBUTORS
Table 1: PSM CID Measurement Framework Editors

Editors Organization
Cheryl Jones Army Futures Command – CCDC Armament Center
Geoff Draper L3Harris Technologies / NDIA Systems Engineering Division
Bill Golaz Lockheed Martin Corporation
Paul Janusz Army Futures Command – CCDC Armament Center

Table 2: Part 3 Core Team Contributors and their Organization

Core Team Organization
Mark Cornwell OUSD R&E
Holly Dunlap Raytheon Technologies
William Hayes Software Engineering Institute
Ronda Henning L3Harris Technologies
Stephen Henry Defense Acquisition University (retired)
Joe Jarzombek Synopsys
Jason McDonald L3Harris Technologies
William J. Nichols Software Engineering Institute
Cory Ocker Raytheon Technologies
Carmela Rice OUSD (A&S)
David Rosenfeld L3Harris Technologies
Larri Rosser Raytheon Technologies
Forrest Shull Software Engineering Institute
Robin Yeman Lockheed Martin
Carol Woody Software Engineering Institute / CERT

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 3

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

10. SOFTWARE ASSURANCE

The rapid delivery of secure, resilient systems that meet mission needs is a business and national
security imperative. The timely mitigation and resolution of security vulnerabilities and
weaknesses is a business-critical concern that affects the system security posture and the speed
and cycle time at which new capabilities are deployed and securely maintained. Department of
Defense (DoD) systems are software-intensive, pushing software assurance into a key role in
systems' system security posture. Software Assurance is the level of confidence that software is
free from vulnerabilities, either intentionally designed into the software or accidentally inserted
at any time during its life cycle, and that the software functions in the intended manner. Because
software systems may consist of open source, Commercial Off the Shelf (COTS) products, and
unique applications combined to address mission requirements, software assurance must be
addressed throughout the entire system development and acquisition lifecycle. This method of
system development introduces security concerns that must be addressed throughout the system
product life cycle, in both development and operations (as emphasized in DevSecOps).
As part of the DoD Adaptive Acquisition Framework (AAF), multiple DoD functional policies
drive software assurance requirements to Program Managers, Science & Technology (S&T)
managers, and systems engineers. DoD Instruction (DoDI) 5000.90 requires program managers
to address cybersecurity responsibilities from the earliest exploratory phase throughout all stages
of the acquisition. Potential breaches and their consequences must be documented in the Cyber
Security Strategy annex to the Program Protection Plan and must include network, enabling
systems, and supply chain risks. Additionally, per DoDI 5000.83 Technology and Program
Protection, software assurance methods and practices, a critical part of program protection in
design, test, manufacture and sustainment, ensures that systems function as intended, mitigating
risks associated with known and exploitable software vulnerabilities to provide a level of
assurance commensurate with technology, program, system and mission objectives. It also
directs the establishment of Technology Area Protection Plans (TAPP) for each S&T
modernization priority area to reduce compromise or loss of critical technologies and protect
against unwanted technology transfer. Key elements of TAPPs include:
• Critical technology areas and technical threshold levels to protect
• Contract, grant, and cooperative agreement clauses
• Protection efforts for contractor, contracts, and universities researchers to focus on
• Thresholds for international collaboration and sales.

Measures such as those described here help programs manage the implementation and
effectiveness of their Cyber Security Strategy across the program life cycle. Data from the TAPP
informs all of the Government protection effort for critical DoD technologies.
The integration of software assurance measurement into the development and acquisition life
cycle is emphasized in the Defense Innovation Board (DIB) Software Acquisition and Practice
(SWAP) study and new DoD Adaptive Acquisition Framework policies. The strategies,
visionary concepts, and best practices relevant to successfully achieving software assurance
measurement include:

• Create and use automatically generated, continuously available measures that emphasize
speed, cycle time, security, and code quality.

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 4

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

• Make security a first-order consideration for all software-intensive systems, recognizing
that security-at-the-perimeter is not enough.

• Create, implement, support, and require a fully automatable approach to test and
evaluation, including security, which allows high-confidence distribution of software to
the field on an iterative basis.

• Shift from certification of executables, to certification of code, to certification of
development, integration, and deployment toolchain, with the goal of enabling rapid
fielding of mission-critical code at high levels of information assurance.

• Establish and maintain a digital infrastructure within each Service or Agency that enables
rapid deployment of secure software to the field and incentivize its use by contractors.

The DIB SWAP study also recommended measures for software development, including these
measures related to system security:

• Time to field high priority functions (specification -> operations) or fix newly found
security hole (finding -> operations)

• Time required for full regression test (automated) and cybersecurity audit/penetration
testing

• Structure of the code base (software architecture).
These strategies can only be achieved by integrating security considerations early in the entire
engineering life cycle, starting with system concepts, systems engineering, architecture and
design. These enablers are described in the Information Needs and Potential Measures described
in the ICM table in section 12, a summary of which includes:

• Identifying and resolving software vulnerabilities, weaknesses and defects from system
deliveries

• Characterizing the size (lines of code) and trends of software (use of open source, agile
development, etc.) relative to the system attack surface

• Ensuring adequate planning for resources and execution of verification and validation of
software assurance requirements

These security measurement concepts are further described in the following sections:

• Software Assurance Terminology – introduction to key terms, concepts and descriptions
used as a basis for this document

• Implementation Considerations for Assuring Secure Resilient Products – best practices
for design and development practices and tools to help assure an appropriate security
posture in deliverable products and systems

• Software Assurance Measurement – recommendations on a prioritized set of consensus
measures for software assurance

10.1 SOFTWARE ASSURANCE TERMINOLOGY
The following terms, concepts and definitions are applicable for the software assurance practices
and measures in this document.

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 5

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Table 3: Software Assurance Terms and Definitions
Term Description

Software Assurance Software Assurance (SwA) is the level of confidence that software is free from
vulnerabilities, either intentionally designed into the software or accidentally inserted at
any time during its life cycle, and that the software functions in the intended manner
[CNSS 4009]. This ideal of no exploitable vulnerabilities is usually unachievable in
practice, so programs must perform risk management to reduce the probability and
impact of vulnerabilities and related weaknesses to acceptable levels.

https://www.cnss.gov/CNSS/issuances/Instructions.cfm

Common Weakness
Enumeration
(CWE)

Common Weakness Enumeration (CWETM) is a community-developed list of software
and hardware weakness types. It serves as a common language, a measuring stick for
security tools, and as a baseline for weakness identification, mitigation, and prevention
effort.

https://cwe.mitre.org

Common
Vulnerabilities and
Exposures (CVE)

Common Vulnerabilities and Exposures (CVE®) is a list of entries – each containing an
identification number, a description, and at least one public reference – for publicly
known cybersecurity vulnerabilities. CVE Entries are used in numerous cybersecurity
products and services from around the world, including the U.S. National Vulnerability
Database (NVD).

https://cve.mitre.org/

Common Attack
Pattern
Enumeration and
Classification
System (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPECTM) is a community
resource for identifying and understanding attacks. Understanding how the adversary
operates is essential to cyber security. CAPEC helps by providing a comprehensive
dictionary of known patterns of attack employed by adversaries to exploit known
weaknesses in cyber-enabled capabilities. It can be used by analysts, developers, testers,
and educators to advance community understanding and enhance defenses.

https://capec.mitre.org/

Common Weakness
Scoring System
(CWSS)

The Common Weakness Scoring System (CWSSTM) provides a mechanism for
prioritizing software weaknesses in a consistent, flexible, open manner. It is a
collaborative, community-based effort that is addressing the needs of its stakeholders
across government, academia, and industry.

https://cwe.mitre.org/cwss/

Common
Vulnerability
Scoring System
(CVSS)

The Common Vulnerability Scoring System (CVSS) provides a way to capture the
principal characteristics of a vulnerability and produce a numerical score reflecting its
severity. The numerical score can then be translated into a qualitative representation
(such as low, medium, high, and critical) to help organizations properly assess and
prioritize their vulnerability management processes.

https://first.org/cvss/

10.2 IMPLEMENTATION CONSIDERATIONS FOR ASSURING SECURE RESILIENT
PRODUCTS

Software assurance is an integral part of software quality. Research has shown that reduced
defects will also reduce security weaknesses. Defects and security weaknesses are introduced
throughout design and development requiring active identification and removal efforts.
Considerable research and experience have led to well-documented best practices for assuring
the delivery of secure resilient products, spanning the development cycle. These software

https://www.cnss.gov/CNSS/issuances/Instructions.cfm
https://cwe.mitre.org/
https://cve.mitre.org/
https://capec.mitre.org/
https://cwe.mitre.org/cwss/
https://first.org/cvss/

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 6

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

assurance-related topics are beyond the scope of this measurement-focused document but are
mentioned as a key element of assuring product quality and secure systems. Examples of proven
security best practices include:

• Security as a key component integrated into the systems engineering process across the
life cycle, including early requirements, architecture, and design activities. Effective
software assurance must be planned and monitored throughout the systems engineering
process to ensure desired operational outcomes: it cannot not be added after the fact.

• Establishing an organizational culture and emphasis on software assurance, quality, and
proven best practices.

• Adopting secure coding guidelines and practices. Train, deploy, and institutionalize their
consistent use across the organization as an integral part of design, development, and
verification processes.

• Treating security weaknesses as quality defects. Identify, prioritize, and remediate
software assurance defects like other software deficiencies.

• Secure coding practices as part of code reviews and success criteria.
• Incorporating static and dynamic analysis testing tools into the development process, with

regular automated scans of the codebase to identify security weaknesses and
vulnerabilities.

• Incorporating software composition analysis to create a bill of materials.
• Ensuring testing of all components, including open source software and external libraries,

on which applications rely for operations.
• Executing security test cases as part of the automated verification suite integrated into the

software development pipeline and toolchain.
There are many tools and methods for evaluating different aspects of software assurance,
software structure, and code quality. Tools and methods for increasing the assurance of software
and security quality attributes include static and dynamic code analysis tools, defect or
configuration management systems, test suites, and secure development environments. Since
each tool focuses on only a perspective of potential weaknesses and vulnerabilities, plans must
include the use of multiple tools for adequate coverage.

10.3 SOFTWARE ASSURANCE MEASUREMENT
The prior sections set the context for definition of objectives and measures to manage the assured
integrity of software products. The ICM table in section 12 describes information needs and
potential measures for software assurance. These fall generally in the following areas:

• Measures about identifying, mitigating and resolving security vulnerabilities and
weaknesses in developed or non-developmental (reused) software

• Measures about managing security defects and technical debt relative to the system
software attack surface

• Measures of effectiveness for security controls and testing
• Measures assessing the effectiveness of program protection planning and compliance

with the mission-critical Risk Management Framework (RMF)
• Measures of performance on conducting timely security audit/penetration testing and

obtaining Interim Authorization to Test (IATT) and/or Authorization to Operate (ATO)
• Measures of timeliness on recovering from system compromise to a full security posture.

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 7

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

ISO/IEC 25010 software quality includes eight software quality attributes with multiple options
for measurement. As noted in Figure 1, security measures can address confidentiality, integrity,
non-repudiation, accountability, authenticity, and compliance. The Consortium for Information
& Software QualityTM (CISQTM) has developed a standard for the automated static analysis
measurement of Technical Debt that is designed to predict corrective maintenance costs and
related factors to guide IT decisions and resource allocations. Similarly, the Software
Engineering Institute has an extensive collection of best practices for software assurance.

Figure 1: Alignment of PSM Software Assurance Measures with ISO/IEC 25000 standards for quality

characteristics

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 8

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Other qualities such as reliability, maintainability, and performance efficiency align to several of
these same qualities and several measures are already in place that can be leveraged. Existing
measures related to defect tracking, test coverage, problem reports and burndown rates,
meantime to restore, minimum viable product (MVP) and minimum viable capability release
(MVCR) can be useful if applied to security defects, security tests, security problems, and
security requirements. With the implementation of appropriate tagging of security related
outputs across the lifecycle (requirements, defect reports, change requests, etc.), a wide range of
existing measures can be refocused to support tracking of the schedule and progress of security
development, product quality (including security), and several aspects of process performance as
related to software assurance.
Research has shown that an estimated 5% of defects are vulnerabilities (Woody et al, 2014).
Even without specific security designations for defect reports and change requests, this provides
a high-level estimate to help management gauge the level of security risk that should be expected
as the product matures. Measures of defect resolution can use this same relationship to estimate
product security improvement.
With an effective tagging of security related requirements (including those related to supply
chain risk management, insider threat, infrastructure and recovery) and complete traceability as
these flow into architecture, detail design, coding, testing, and implementation the monitoring of
product security can be implemented at each step of the lifecycle. By relating requirements to
the appropriate qualities and tracing them as they flow to components and the development
pipeline, verification of the end product for a critical quality such as security can be greatly
facilitated.
At a minimum, the tracking of known (n-day) weaknesses and vulnerabilities from identification
(typically as the output of static and dynamic analysis tools), prioritization and remediation
(typically using an existing scoring system), and determination of those remaining in the
implemented product should be closely monitored. Additionally, the tracking of the time it
takes for unknown (0-day) weaknesses or vulnerabilities from identification (usually after the
system has been exploited) to mitigation should be closely monitored. This tracking will show
the level of resources applied to security and the remaining risk that the operational environment
will need to address. This can be augmented with third party product information from the
National Vulnerability Database (NVD). Also, suppliers should already be tracking this
information and contracts should be updated to request this level of reporting. Guidance on
contracting for software assurance in DOD contracts is provided in the whitepaper
“Incorporating Software Assurance into Department of Defense Acquisition Contracts” produced
by the DoD SwA Community of Practice Working Group. This can all be handled through
existing defect reporting with the addition of appropriate data tagging.
10.3.1 Software Assurance Measures
The intent of the descriptions of software assurance and measurement in this PSM CID
document is to:

• Increase awareness of security and assurance-related issues across disciplines so they can
be considered early in development life cycle and integrated into system architecture,
design, and implementation processes

• Identify potential measures to identify, mitigate and manage software vulnerabilities and
weaknesses to assure the security and integrity of deliverable software products

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 9

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The ICM table in section 12 identifies potential measures for software assurance aligned with
product and enterprise information needs. Of these, the PSM working group recommends
prioritizing initial software assurance measures as described in Table 4.

Table 4: Recommendations for Initial Software Assurance Measures
Measurement Concepts Recommended Software Assurance Measures

(Initial Priorities)

Identification and resolution of
vulnerabilities and weaknesses

• Identification of vulnerabilities (CVEs) and weaknesses (CWEs)
• Resolution of CVEs and CWEs
• Patches delivered to burn down and close vulnerabilities

Security defect tracking • Counts of security defects (open, closed)
• Security defect attributes (e.g., severity, criticality)
• Security defect containment (saves vs. escapes)

Quality and security testing coverage • Percentage of code base screened for vulnerabilities and weaknesses
(developed code and non-developmental items)

• Security test coverage (code base, security controls)
• Security test case status (passed, failed)
• Coverage and trends in size of the attack surface

Pending community review and feedback, specifications and indicators for prioritized software
assurance measures will be developed and published in future iterations of this guidance.
Many of the other CID measures in this document are also relevant and useful when applied to
software assurance in an overall system context, such as:

• Cycle Time – turnaround time for releasing security patches to resolve vulnerabilities
• MTTR / MTTD – mean time to restore (mitigate) and detect security defects
• Automated Test Coverage – extent of capability and code covered by security test cases
• Defect Detection – containment of security defects and minimizing escapes to operations
• Defect Resolution – the extent of identified security defects that have been resolved
• Burndown – progress toward completing resolution of security vulnerabilities
• Release Frequency – how often security patches and releases are deployed

The PSM working group and security subteam welcomes feedback on this initial set of measures
to advance the state of the practice for software assurance, and experiences from applying them.

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 10

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

11. TECHNICAL DEBT
One of the characteristics of continuous iterative development (CID) is its ability to implement
new capabilities and release them to one's users at a much faster pace than traditional
development. Program managers recognize that doing so involves making informed decisions
and trade-offs amongst inter-related quality, cost, and performance components/objectives. If not
managed properly, these trade-offs can come at a significant cost or "debt", which may have
consequences in the future. One of the goals of the new DoD Adaptive Acquisition Framework
(AAF) policy is to deploy software faster, but not at the expense of compromising quality
(including security). To that end, the policy also requires organizations to measure and manage
their "technical debt".

11.1 TECHNICAL DEBT TERMINOLOGY
Technical debt consists of design or implementation constructs that are expedient in the short
term, but that set up a technical context that can make a future change more costly or impossible.
Technical debt may result from having implementation issues related to architecture, design,
structure, duplication, test coverage, comments and documentation, potential defects,
complexity, or coding practices. The metaphor of "debt" communicates that technical debt items
incur extra costs for the program in the future, in the form of increased costs of change during
lifecycle evolution and sustainment. Addressing technical debt requires effort to be spent on
activities to improve the quality of the software architecture, code, documentation, etc., or
otherwise "pay down" the debt to the system, beyond just adding new capability.
Discussion of Definition
There is considerable academic research and industry practice focused on addressing technical
debt, but no consistent definitions or measures are in widespread use, due in part to differing
goals. Some in the system and software engineering community take a somewhat narrow
definition that restricts the domain of technical debt to sub-optimal design decisions. This
approach primarily affects maintainability issues such as changeability and scalability, but often
excludes areas such as missing features, functional defects, or most structural flaws. In contrast,
other definitions of technical debt tend toward broader measures that aim to include the future
costs of corrective maintenance and other software quality-related outcomes.
For our purposes in this report, technical debt will be considered from three primary sources:

• Debt from weaknesses and vulnerabilities in code constructs

• Debt from design and architecture flaws

• Debt from missing information items such as documentation shortfalls, missing
information, IP issues.

System security risk is a form of technical debt, considered when determining program plans and
mitigation priorities. Software flaws, weaknesses, and vulnerabilities should be considered
defects, adjudicated and resourced on an equal footing relative to other program priorities.
Defects are categorized using standard registries and taxonomies. Security-related defects are
worked off during the development process for subsequent system releases.

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 11

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Some definitions of technical debt also include mission debt such as functional deficiencies,
required capabilities or features that should have already been implemented but are missing
(distinguished from a backlog of features not yet prioritized for implementation), or missing
functionality or performance issues in COTS for a COTS-intensive system. However, mission
debt is not included as a part of technical debt as defined in this paper.
A buildup of technical debt items may make it more difficult to continue to add more features in
a timely way or otherwise prevent the team from dealing with necessary enhancements. While
the definition discusses technical debt that is "expedient in the short term", not all technical debt
arises from conscious decisions. Some technical debt is known; it is the result of risks accepted,
or business decisions made to ensure progress towards near term goals. Other technical debt
may be inadvertent and not known or identified until later. The real question is how a program
can effectively identify and track all these needs together. With only finite resources available, a
program must balance resolving defects and mission debt, implementing new capabilities, and
addressing technical debt. One possible strategy for addressing the burndown and reducing the
system's overall technical debt may be to leverage existing plans for upgrades or related tasks;
e.g., a supplier could fix a legacy static analysis finding the next time that code file is touched.
Another strategy would be to have iterations specifically dedicated to the burndown of technical
debt items. This strategy would be up to the teams to decide which course of action is best.
When discussing technical debt, it may be important to distinguish between root cause of
technical debt (e.g. problematic code constructs, code not tested, lack of peer reviews), counts of
technical debt (e.g. comments, CVEs), and the impacts of technical debt (e.g. how hard is it to
make changes, cost/effort/time to resolve technical debt).

11.2 INFORMATION NEEDS
Information needs related to technical debt include:

• How easy/difficult is it to update or refactor the design and code?
• Can the system architecture be expanded as the system continues to be developed and

revised?
• When does it become too costly or take too long to maintain the design or architecture?
• How many defects are identified as technical debt (versus mission debt)?
• Are there areas of code that have a high frequency of defects?
• Is the documentation current, sufficient for user needs, and sustainable throughout the

lifecycle?
• When should identified technical debt be resolved, parts of the system replaced, or a new

system started?
• What is the impact of this technical debt? Is it worth the investment and schedule to

resolve it?

11.3 MEASURES FOR TECHNICAL DEBT
Measures addressing the breadth of Technical Debt is worthy of a separate dedicated effort;
indeed, many are addressed by extensive research literature referenced herein. Notably, these
issues apply broadly to development domains well beyond just continuous iterative development,
which is the emphasis of this document. The PSM working group has chosen to describe how the

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 12

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CID measures described in Part 2, Section 8 of this framework can be applied to identify and
mitigate certain factors of Technical Debt.

11.4 APPLYING THE PSM CID MEASUREMENT FRAMEWORK TO MANAGE
TECHNICAL DEBT

Technical debt is not measured with "one" measure but will likely utilize several measures. Some
of the example measures in the PSM CID Measurement Framework can be used for multiple
purposes, including technical debt. As part of this working group effort, other practical and
newer measures were identified to provide feedback on technical debt specific information
needs. These are identified in the ICM Table in Part 1 section 7, described in the measurement
specifications in Part 2 section 8, and some examples discussed in Table 5 below.

Table 5: Applying PSM CID Measures to Manage Technical Debt
PSM Measure Example Indicator

Example Applicability to Managing Technical Debt

Burndown Chart
(8.2)

Planned band shows the
plan rate of closing of
defects that are related to
technical debt, while open
band shows how many
identified technical debt
defects remain open.
Used to manage the
closure of identified
technical debt through
development. Requires
that technical debt is
identified in defect
tracking system.

Committed vs.
Completed (8.3)

If committed stories
outpace completed
stories, there will be
technical debt if
resourcing or
scheduling is not
adjusted.

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 13

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

PSM Measure Example Indicator
Example Applicability to Managing Technical Debt

Cumulative Flow
(8.4)

Top band of CFD
shows rate of arrival of
new work that has been
committed to. Height
shows the depth of the
queue of work To Do.
A widening band show
work commitments that
are not being worked
off at the same rate as
arrivals and represents a
potential growth in
technical debt.
Watch for increase in

technical debt represented by growth "in progress" or "to do" queues, which
indicates backlogs and work not being completed as committed.

Defect Resolution
(8.7)

For technical or
management reasons,
some detected defects
may be knowingly
accepted with resolution
deferred to a future
iteration or release. It
may be a reasoned cost
vs. benefit decision to
defer resolution of
known defects. This is

one kind of technical debt.
Open defects (the difference between defects resolved and defects detected)
may be technical or mission debt. These defects are on the backlog and may not
yet be allocated to an increment or release. Escapes to later iterations/releases
indicative of rework that could be more costly. Failure to detect defects is
hidden future rework (technical debt).

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 14

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

PSM Measure Example Indicator
Example Applicability to Managing Technical Debt

Mean Time to
Restore (MTTR) /
Mean Time to Detect
(MTTD)
 (8.8)

Operational services can
be impacted if defects
escape from
development to
operations. MTTR
(restore) and MTTD
(detect) are indicators of
how quickly full service
can be restored.
Availability and
reliability of deployed
services, and impacts to
operations, are key
factors in assessing

technical debt.

11.5 TOOLS/METHODS
Automated tools may be required to collect the data for the measures. There are many tools and
methods for measuring and evaluating different aspects of technical debt including:

• Code/Product- include static and dynamic code analysis tools that check for compliance
with coding standards, code scanning tools that check for vulnerabilities and weaknesses,
and code quality tools that track and classify defects, test suites monitor test coverage,
etc.

• Development Processes - DevSecOps or Continuous Integration / Continuous Delivery
(CI/CD) pipelines for automated analysis of newly introduced code and evaluation of
newly identified CWE/CVE

• Design – MBSE tools, engineering tools, structural quality tools that evaluate architecture
maintainability, cohesion, coupling, flexibility, scalability, etc.

• Missing information – tools that help with configuration management systems,
development environments, technical manuals

A few of the more widely used tools and methods are noted in the references in the bibliography.
Before selection by a program, any tool should be evaluated based on the needs of the program
and the strength of the tool. Needs should include the information needs to be addressed, and the
measures selected to address those information needs.
Adopters of the PSM CID framework are encouraged to seek additional guidance on identifying
and managing Technical Debt by leveraging resources from CISQ, Object Management Group
(OMG), INCOSE, the Software Engineering Institute (SEI), and other researchers. Additionally,
indicators of Technical Debt applicable to traditional development can also be applied in CID
environments, such as those contained in these measurement references:

• Practical Software and Systems Measurement: A Foundation for Objective Management,
v. 4.0. http://www.psmsc.com/PSMGuide.asp

• Systems Engineering Leading Indicators Guide, Version 2.0. INCOSE-TP-2005-001-03

http://www.psmsc.com/PSMGuide.asp

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 15

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

12. ICM TABLE Part 1 contains an ICM table for continuous iterative development. The information needs and measures in this
section (Table 6) are specific to software assurance and technical debt.

Table 6: Software Assurance Issues, Categories, and Measures
Row Information

Categories
Measurable
Concept

Team Information
Need

Product Information
Need

Enterprise Information
Need

Potential Measures** Notes Category*

1 Schedule and
Progress

Product
Quality

Work Unit
Progress

Security

Are patches
delivered as
committed?

Are known (n-day)
vulnerabilities and
weaknesses resolved as
committed? Are
previously unknown (o-
day) vulnerabilities being
mitigated after being
identified?

What features /
capabilities remain
vulnerable and are
unresolved?

Patches Delivered
Vulnerabilities,
Weaknesses Resolved

Features/Capabilities
Resolved

Burndown of
Vulnerabilities,
Weaknesses

Time from vulnerability
identification to
mitigation

 SwA-High

2 Schedule and
Progress

Work Backlog How many software
assurance defects
contribute to technical
debt? Mission debt?

How many software
assurance defects are
going to be resolved in
the next release? Future
releases?

 Software Assurance
Defects Unresolved

Backlog
Completed iterations in
release

Criticality is key --
Requires a process
to address zero day
vulnerabilities and
rapid remediation.

Program would
have to designate
defects as software
assurance.

SwA-
Medium

3 Schedule &
Progress

Work Backlog How many
iterations does it
take to resolve
outstanding
technical debt
actions?

How many
releases/months does it
take to resolve
outstanding technical
debt actions?

How many external
releases/months does it
take to resolve
outstanding technical
debt actions?

Cycle Time
Aging of Tasks
Defect Resolution, Defect
Lag Time

Mean Time to Restore
(MTTR)

Technical Debt Actions
(Written, Committed,
Completed)

Burndown of Technical
Debt Items from
Backlog

Source: Design,
Product, or Info
Items

Programs would
have to designate
these items as
technical debt.

TD-High

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 16

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Row Information
Categories

Measurable
Concept

Team Information
Need

Product Information
Need

Enterprise Information
Need

Potential Measures** Notes Category*

4 Resources and
Cost

Financial
Performance

What is the level of
effort needed to
address critical
weaknesses prior
to release?

What is the level of effort
needed to contain and
recover from a realized
risk or vulnerability (to
an acceptable level of
risk)?

What is the level of effort
needed to contain and
recover from a realized
risk or vulnerability (to
an acceptable level of
risk)?

Cost to Fix
Vulnerabilities

Specific to one
realized risk or
vulnerability, or a
set.

Need to include
financials to link it
to program risk.

SwA-
Medium

5 Resources &
Cost

[Schedule &
Progress

Process
Performance]

Facilities and
Support
Resources

 When does it become too
costly or take too long to
evolve or maintain the
architecture, design, or
component?

When should a
replacement system or
component be
considered?

Is the product taking on
acceptable risk?

When does it become too
costly or take too long to
evolve or maintain the
architecture, design, or
component?

Is this system or
component incompatible
for use or obsolete? Is
there another system or
component in the
portfolio that can do the
job better?

As an enterprise, are we
taking on acceptable
risk?

Cost and Schedule
(Time) to Resolve
Technical Debt Actions

Cost of Delay
Rework Cost/Effort
Total Lifecycle Cost,
Total Ownership Cost

Replacement Cost and
Schedule (Time)

Risk Burndown

Source: Design,
Product

TD-
Medium

6 Resources &
Cost

[Schedule &
Progress

Product
Quality

Customer
Satisfaction]

Facilities and
Support
Resources

 What is the impact of this
technical debt?

Is it worth the investment
and schedule (time) to
resolve it?

What is the impact of this
technical debt?

Is it worth the investment
and schedule (time) to
resolve it?

Technical Debt Costs
Replacement Costs
Total Lifecycle Costs,
Total Ownership Costs

 TD-
Medium

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 17

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Row Information
Categories

Measurable
Concept

Team Information
Need

Product Information
Need

Enterprise Information
Need

Potential Measures** Notes Category*

7 Product
Quality

Functional
Correctness

How many
software assurance
defects have been
identified and
adjudicated?

How many new
software assurance
defects have been
identified since
the last
assessment?

How many software
assurance defects have
been identified and
adjudicated?

How many new software
assurance defects have
been identified since the
last assessment?

How big/what is the size
of the system’s attack
surface?

Is the attack surface
increasing, decreasing, or
staying the same?

How big/what is the size
of the system’s attack
surface?

Is the attack surface
increasing, decreasing,
or staying the same?

Common
Vulnerabilities
Enumeration (CVEs)

Common Weaknesses
Exposure (CWEs)

Software Assurance
Vulnerabilities and
weaknesses Detected /
Resolved

Software Assurance
Defects Detected /
Resolved

Trend of Software
Assurance Defects
Detected / Resolved over
time

Size of Attack Surface
Defect Density (Defects /
size)

Programs would
need to define what
constitutes a SwA
defect and
categorize defects.

Defects and
vulnerabilities may
be categorized by
priority, criticality,
design, product,
info items, etc.

Existing
vulnerabilities and
weaknesses need to
be fixed to reduce
the attack surface.

Focus also on
resolving
vulnerabilities and
weaknesses earlier
in the lifecycle.

SwA-High

8 Product
Quality

Security

What impacts to system
performance and/or
integrity will incur by
refactoring or replacing
components?

How vulnerable is the
system to attack?

How many
vulnerabilities and
weaknesses have been
mitigated?

Percentage of Code Base
Available for Screening

Percentage of Code Base
Screened for
Vulnerabilities and
Weaknesses

Percentage of Code
Requiring Binary
Analysis (no source code
available)

Activity: Testing of
Reuse/Supply
Chain.

The code base
would include code
from legacy, 3rd
party, open source,
subcontractors, and
COTS.

SwA-High

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 18

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Row Information
Categories

Measurable
Concept

Team Information
Need

Product Information
Need

Enterprise Information
Need

Potential Measures** Notes Category*

9 Product
Quality

Security What percentage of
code from
suppliers (legacy,
3rd party,
subcontractors,
COTS) is screened
for vulnerabilities
and weaknesses?

What percentage of code
from suppliers (legacy,
3rd party, subcontractors,
COTS) is screened for
vulnerabilities and
weaknesses?

What is the quality /
vulnerability /
supportability of legacy
and third party code?
Did my system inherit a
vulnerability from
another system?

How many vulnerabilities
and weaknesses were
inherited from COTS?
How many have been
mitigated? How many
have been reported to the
National Vulnerability
Database (NVD)?

How secure is the
product?

What percentage of the
code from suppliers
(legacy, 3rd party,
subcontractors, COTS)
is screened for
vulnerabilities and
weaknesses?

What is the quality /
vulnerability /
supportability of legacy
and third party code?

Did my system inherit a
vulnerability from
another system?

Vulnerabilities and
Weaknesses Inherited
from COTS

Analysis of the
COTS would
include looking at
the age of the
COTS the last
update.

Older versions may
be unsupportable
and need to be
replaced. Newer
versions have to go
through the
accreditation
process.

Address and
identify the
vulnerabilities and
weaknesses --
isolate or sandbox.

SwA-High

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 19

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Row Information
Categories

Measurable
Concept

Team Information
Need

Product Information
Need

Enterprise Information
Need

Potential Measures** Notes Category*

10 Product
Quality

Security What percentage of
software assurance
controls are
covered by
testing?

How many of the
vulnerabilities
have been
identified in
testing to
determine the
extent of impacted
areas?

Is a patch working
sufficiently for the
time being?

What percentage of
software assurance
controls are covered by
testing?

How many relevant attack
patterns have been
covered by test cases?

Has the system been
sufficiently tested for
software assurance
vulnerabilities and
weaknesses?

 Code Test Coverage
(impacted areas, patched
areas)

Automated SwA Test
Coverage

Vulnerabilities, Attack
Pattern Test Coverage

Test Cases Developed,
Verified per Attack
Pattern

Failed Tests Due to
Vulnerabilities

Misuse/Abuse Cases
Opportunities

Vulnerabilities that are
Identified in Testing,
but not Fixed in
Coding

Activity: Testing
Code - Have the
software assurance
controls been
tested?

Activity: Testing
Vulnerabilities and
Weaknesses by
phase

Analysis would
include assessing
whether
vulnerabilities are
causing downtime
or denial of
service, or result in
the data being
compromised.

SwA-
Medium

11 Product
Quality

Security Are we preventing
vulnerabilities
from releasing to
operation?

Is the attack surface
increasing, decreasing, or
staying the same?

How much do these
unpatched
vulnerabilities
contribute to the overall
system risk or software
assurance posture?

What is the risk to the
system mission if this
product is released with
these weaknesses and
vulnerabilities?

Trends in size of attack
surface

Likely Impact of
Residual Weaknesses &
Vulnerabilities

Trends in findings of
code scans over time
from testing to fielding

Analysis would
include assessing
whether the
vulnerabilities
were causing
downtime or denial
of service, or
resulted in the data
being
compromised.

SwA-
Medium

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 20

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Row Information
Categories

Measurable
Concept

Team Information
Need

Product Information
Need

Enterprise Information
Need

Potential Measures** Notes Category*

12 Product
Quality

Dependability -
Reliability

Is there a need to
design the
software to be
modular,
replaceable, or
proprietary/open
source?

Can the system
architecture be expanded
as the system continues
to be developed and
revised?

How easy/difficult is it to
update or refactor the
design and product?

When do obsolete
components need to be
replaced?

 Cohesion
Coupling
Design and/or Code
Complexity

Interfaces Affected
Effort/Cost to De-Couple
or Refactor System

Source: Design,
Product

TD-
Medium

13 Product
Quality

Dependability -
Reliability

 Is the documentation
sufficient for user needs
and for sustainability?

Is the technical data
package complete and
current?

Is the documentation
sufficient for user needs
and for sustainability?

Is the technical data
package complete and
current?

Documentation Actions
or Defects on
Documents Needed for
Technical Data Package
(TDP)

Source: Information TD-
Medium

14 Product
Quality

Process
Performance

Security
Process
Effectiveness

 What Risk
Management
Framework
(RMF) Controls
need to be
implemented/
adhered to?

 What RMF Controls need
to be implemented/
adhered to?

What is the (overall)
compliance with the
mission-critical Risk
Management Framework
(RMF) controls
established for a
program?

What is the (overall)
compliance with the
mission-critical Risk
Management
Framework (RMF)
controls established for
a program?

RMF Controls SwA-
Medium

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 21

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Row Information
Categories

Measurable
Concept

Team Information
Need

Product Information
Need

Enterprise Information
Need

Potential Measures** Notes Category*

15 Product
Quality

Process
Performance

Security
Process
Effectiveness

 How quickly can a
software assurance event
or vulnerability be
detected? (Monitor,
Detect)

How quickly can the team
respond to a software
assurance event?
(Resolve, Deploy)

How well has the system
been designed to
recover?

How rapid can the
system recover to a
known, secure state after
an attack (Resiliency)?

Is the system cyber-
resilient?
(Remove, recover)

Mean Time to Restore
(MTTR)

Mean Time to Detect
(MTTD)

Response Time
Time to Patch
Vulnerability

Software assurance
Vulnerability Lead or
Cycle time

Also a schedule and
quality issue.

Dependent on
identified
vulnerabilities
(COTS issues or
built-in).

May be dependent
on release process
(e.g. assessments
& authorizations).

SwA-
Medium

16 Product
Quality

Security Is the program protection
planning adequate?

Is there a software
assurance strategy that
maps to the Program
Protection Plan?

Vulnerabilities Covered
by Program Protection

Vulnerabilities Removed
Prior to Testing

Code Passing Peer
Review

SwA-
Medium

17 Product
Quality

[Customer
Satisfaction

Resources &
Cost]

Security How much technical debt
does the system have?

What will it take to
remove this technical
debt?

How is technical debt
prioritized?

How much technical debt
does the enterprise
have?

What will it take to
remove this technical
debt?

Technical Debt Actions
(Written, Committed,
Completed)

Effort/Cost to Resolve
Technical Debt (Plan,
Actual)

 TD-High

18 Product
Quality

[Process
Performance]

Security How many defects
are identified as
technical debt?

How many defects are
identified as technical
debt?

 Technical Debt Defects
Coding Standard
Violations

Program would
have to designate
defects as technical
debt.

TD-
Medium

19 Process
Performance

Product
Quality

Process
Efficiency

Security

 How long does it take to
successfully complete
software assurance
audit/penetration testing?

How much of the SwA
testing is automated?

How long does it take to
successfully complete
software assurance
audit/penetration
testing?

How much of the SwA
testing is automated?

Software Assurance
Test Duration

Automated SwA Test
Coverage

Critical path, time
required for full
regression
testing/audit.

Relates to
continuous ATO
process.

SwA-High

PSM Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 22

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Row Information
Categories

Measurable
Concept

Team Information
Need

Product Information
Need

Enterprise Information
Need

Potential Measures** Notes Category*

20 Process
Performance

[Schedule and
Progress]

Process
Efficiency

How often has the
baseline changed?

Is the baseline
stable?

How long does it take to
get an authorization
(IATT/ATO) for new
releases?

How long does it take to
prepare the authorization
Package?

Is the Time to
authorization quick
enough to meet the
criteria of a Continuous
ATO?

How many critical
software assurance
defects are holding
up/present a roadblock to
the authorization
process?

How long does it take to
get an authorization
(IATT/ATO) for new
releases?

How fast can the system
deploy new secure
capabilities to the user?

Can the system be
released (Go/No Go
Decision)?

Time to Authorization
(IATT/ATO)

Time to Prepare the
authorization Package

Authorization (IATT/
ATO) Status

Frequency of Baseline
Changes

Unresolved Critical
Software Assurance
Defects

Use of a hardened
DoD cloud may
speed
authorizations for
deployment.

Time to
authorization in
relationship to the
release date.

Time to Prepare the
authorization
package may be
broken out by
acquirer, supplier,
and joint efforts.

SwA-High

** Measures in Bold were identified as High Priority and will be addressed in the next release of this paper.
* Category includes Sw Assurance (SwA) or Technical Debt (Tech Debt) and Priority

Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 23

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

BIBLIOGRAPHY
Policy and Study Board Reports
Department of Defense. DOD Instruction 5000.87, Operation of the Software Acquisition

Pathway. (2020, October 2)
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF?
ver=virAfQj4v_LgN1JxpB_dpA%3D%3D

Defense Innovation Board (DIB), Software Is Never Done: Refactoring the Acquisition Code
for Competitive Advantage, 2019, Software Acquisition and Practices (SWAP)
https://media.defense.gov/2019/Apr/30/2002124828/-1/-
1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORC
OMPETITIVEADVANTAGE_FINAL.SWAP.REPORT.PDF

Defense Science Board (DSB), Design and Acquisition of Software for Defense Systems,
Defense Science Board (DSB) Task Force on Design and Acquisition of Software for
Defense Systems, 2018
https://dsb.cto.mil/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf

General
John McGarry (Author), D. C. (2001). Practical Software Measurement: Objective Information

for Decision Makers. Addison-Wesley Professional.
Vacanti, D. S. (2015). Actionable Agile Metrics for Predictability: An Introduction. Daniel S.

Vacanti, Inc.

Software Assurance
ISO/IEC 25010, Systems and Software Quality Requirements and Evaluation (SQuaRE) -

System and software Quality Models:
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Dr. William R. Nichols, J. D. (2018). DoD Developer’s Guidebook for Software Assurance.
Retrieved from Software Engineering Institute:
https://resources.sei.cmu.edu/asset_files/SpecialReport/2018_003_001_538761.pdf

K. Nidiffer, C. W. (2018). Program Manager's Guidebook for Software Assurance. Retrieved
from Software Engineering Institute: https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=538771

MITRE. (n.d.). Common Attack Pattern Enumeration and Classification. Retrieved from
CAPEC: https://capec.mitre.org/

Mitre. (n.d.). Common Weakness Scoring System (CWSS™). Retrieved from Common Weakness
Enumeration: https://cwe.mitre.org/cwss/cwss_v1.0.1.html

NVD. (n.d.). Common Vulnerabilities and Exposures. Retrieved from CVE:
https://cve.mitre.org/

https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF?ver=virAfQj4v_LgN1JxpB_dpA%3D%3D
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF?ver=virAfQj4v_LgN1JxpB_dpA%3D%3D
https://media.defense.gov/2019/Apr/30/2002124828/-1/-1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORCOMPETITIVEADVANTAGE_FINAL.SWAP.REPORT.PDF
https://media.defense.gov/2019/Apr/30/2002124828/-1/-1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORCOMPETITIVEADVANTAGE_FINAL.SWAP.REPORT.PDF
https://media.defense.gov/2019/Apr/30/2002124828/-1/-1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORCOMPETITIVEADVANTAGE_FINAL.SWAP.REPORT.PDF
https://dsb.cto.mil/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://resources.sei.cmu.edu/asset_files/SpecialReport/2018_003_001_538761.pdf
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=538771
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=538771
https://capec.mitre.org/
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://cve.mitre.org/

Continuous Iterative Development
Measurement Framework - Part 3

Publish Date: 15 April 2021 Version: v2.1 24

Use or disclosure of data on this page is subject to the restriction on the copyright page of this report.
Unclassified: Distribution Statement A: Approved for Public Release; Distribution is Unlimited

NVD. (n.d.). Common Vulnerability Scoring System (CVSS). Retrieved from National
Vulnerability Database: https://nvd.nist.gov/vuln-metrics/cvss

SEI. (n.d.). Predicting Software Assurance Using Quality and Reliability Measures. Retrieved
from Software Engineering Institute: https://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=428589

Woody, E. R. (n.d.). Exploring the Use of Metrics for Software Assurance. Retrieved from
Software Engineering Institute: https://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=540881

Marien, John R et. al. (2017). Department of Defense (DoD) Software Assurance (SwA)
Community of Practice (CoP) Contract Language Working Group Working Paper.
Retrieved from Department of Defense Research and Engineering Enterprise:
https://rt.cto.mil/wp-content/uploads/2019/06/Incorporating-SwA-Contracts-2017-11-
15.pdf

Technical Debt
Managing Technical Debt: Reducing Friction in Software Development by Philippe Kruchten,

Robert Nord, Ipek Ozkaya, ISBN-13: 978-0135645932, ISBN-10: 013564593X
An OMG ® Automated Technical Debt Measure Publication Automated Technical Debt

Measure. (2018).
https://www.omg.org/spec/ATDM/NormativeMachineConsumableFiles
https:// www.omg.org/spec/ATDM/20170303/AutomatedTechnicalDebtMeasure.xmi

https://nvd.nist.gov/vuln-metrics/cvss
https://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=428589
https://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=428589
https://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=540881
https://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=540881
https://rt.cto.mil/wp-content/uploads/2019/06/Incorporating-SwA-Contracts-2017-11-15.pdf
https://rt.cto.mil/wp-content/uploads/2019/06/Incorporating-SwA-Contracts-2017-11-15.pdf
https://www.omg.org/spec/ATDM/NormativeMachineConsumableFileshttps:/%20www.omg.org/spec/ATDM/20170303/AutomatedTechnicalDebtMeasure.xmi
https://www.omg.org/spec/ATDM/NormativeMachineConsumableFileshttps:/%20www.omg.org/spec/ATDM/20170303/AutomatedTechnicalDebtMeasure.xmi

	Contents
	List of Figures
	List of Tables
	Executive Summary
	Contributors

	10. Software Assurance
	10.1 Software Assurance Terminology
	10.2 Implementation Considerations for Assuring Secure Resilient Products
	10.3 Software Assurance Measurement
	10.3.1 Software Assurance Measures

	11. Technical Debt
	11.1 Technical Debt Terminology
	11.2 Information Needs
	11.3 Measures for Technical Debt
	11.4 Applying the PSM CID Measurement Framework to Manage Technical Debt
	11.5 Tools/Methods

	12. ICM Table
	Bibliography

