Continuous Iterative Development (CID) Measurement Framework v2.0

Cheryl Jones - US Army Futures Command - DEVCOM AC
Geoff Draper - L3Harris Technologies

NDIA SED - April 2021

Unclassified Distribution Statement A: Approved for Public Release
Distribution is Unlimited
The Evolution of SW Acquisition in DoD

“Performance at the speed of relevance” Streamline rapid, iterative approaches

- 2018 NDAA (Sec. 872) - DIB analyze SW regs
- 2019 NDAA (Sec. 868) - Implement DSB recommendations
- 2020 NDAA - Implement DIB recommendations

Top recommendations
- Jan Hon. Ellen Lord (A&S)
- 2019 NDAA - Streamline rapid, iterative approaches
- 2020 NDAA - Implement DIB

-DoDI 5000.02 (1/23/20) Operation of the Adaptive Acquisition Framework

Metrics
- Unclassified Distribution Statement A: Approved for Public Release
- Distribution is Unlimited

PSM Measurement Methodology

• A collaborative decision environment founded on objective information and open communications enables the measurement results to positively impact program objectives

• Practical Software and Systems Measurement (PSM) principles are used to define relevant measures
 - What you measure is driven by what you need to know - information needs
 - Measurement definitions and methods are determined by program and/or enterprise processes - process integration
 - The environment you work in drives how the measurement results are interpreted - decision context
 - Action must be taken to realize any benefit from measurement - fact based decision making

See Part 1, Section 5 for more information
Unclassified Distribution Statement A: Approved for Public Release Distribution is Unlimited
Information Needs

- Based on objectives and issues from the team, program, and enterprise levels
 - Objective - a project goal or requirement
 - Issue - an area of concern that could impact the achievement of an objective, including risks, problems, and lack of information

Measurement Construct - Levels

Adapted from ISO/IEC/IEEE - Measurement Process

See Part 1, Section 4 for more information
Information Needs, Categories, and Measures

ICM Table (Excerpt)

<table>
<thead>
<tr>
<th>Information Categories</th>
<th>Measurable Concept</th>
<th>Team Information Need</th>
<th>Product Information Need</th>
<th>Enterprise Information Need</th>
<th>Potential Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule and Progress</td>
<td>Work Unit Progress (team, product) Milestone Completion (enterprise)</td>
<td>Are story points delivered as committed? Are we still on track to deliver all story points per roadmap? (on plan)</td>
<td>Are features/capabilities delivered as committed? Are we still on track to deliver all features/capabilities per roadmap? (on plan) What are the features/capabilities at risk of not being completed as scheduled? Are all capabilities/requirements allocated to releases?</td>
<td>Are capabilities delivered as committed? Are we still on track to deliver all capabilities per roadmap? (on plan) What are the capabilities at risk of not being completed as scheduled?</td>
<td>Burndown Committed vs. Completed Velocity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Feature or Capability Implementation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test Progress</td>
</tr>
</tbody>
</table>

See Part 1, Section 7 for more information

Unclassified Distribution Statement A: Approved for Public Release
Distribution is Unlimited
CID Work Decomposition

<table>
<thead>
<tr>
<th>Term</th>
<th>Synonyms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Iterative Development (CID)</td>
<td>Agile, DevOps, DevSecOps, SAFe</td>
<td>A method of managing development, testing, and release of software, or systems, to continually, or iteratively, provide working functional systems of increasing capability to internal and external customers.</td>
</tr>
<tr>
<td>Roadmap</td>
<td></td>
<td>A high-level description, with text and visual, that maps out the vision and direction of product offerings over time. It describes the goals and capabilities of external releases. Dependencies between features/capabilities might be visualized. Relevant milestones, e.g., large-scale projects that interact with the product offerings, might be included.</td>
</tr>
<tr>
<td>Capability</td>
<td>Epic, Mission Requirement, Objective</td>
<td>Higher-level solution typically spanning multiple releases. For DoD, these may be reflected by a Capability Needs Statement (CNS) or ICIDS capabilities. Capabilities are made up of multiple Features to facilitate implementation.</td>
</tr>
<tr>
<td>Feature</td>
<td></td>
<td>A service or distinguishing characteristic of a software item (e.g., performance, portability, or functionality) that fulfills a stakeholder need and includes benefit and acceptance criteria within one release. Features are used to complete capabilities and are comprised of multiple Stories (or tasks, use cases, etc.). In some contexts, the term feature might also refer to software systems (capability-level scope) that ingest data, process data, and deliver a certain product/output to the stakeholders.</td>
</tr>
<tr>
<td>Story</td>
<td>Use cases</td>
<td>User Story. A small desired behavior of the system based on a user scenario that can be implemented and demonstrated in one iteration. A story is comprised of one or more tasks. In software development and product management, a user story is an informal, natural language description of one or more features of a software system. User stories are written from the perspective of an end user or user of a system. Use Case. In software and systems engineering, a use case is a list of actions or event steps, typically defining the interactions between a user and a system (or between software elements), to achieve a goal. Use cases can be used in addition to or in lieu of user stories.</td>
</tr>
<tr>
<td>Story Points</td>
<td></td>
<td>A subjective value assigned by the developing team to a story to provide a relative measure of effort and complexity. Story points are a unit-less value; they are a scalar indicator of relevant complexity. Story points are generally not comparable across teams.</td>
</tr>
<tr>
<td>Task</td>
<td></td>
<td>Steps to be completed to satisfy a Story.</td>
</tr>
</tbody>
</table>

See Part 1, Section 2.1 and 3 for more information

Unclassified Distribution Statement A: Approved for Public Release
Distribution is Unlimited
Aligning the PSM framework and measures with DoD SW policy and enterprise improvement

- Automated Test Coverage
- Burndown (Sprint / Release)
- Committed vs. Completed
- Cumulative Flow
- Cycle Time / Lead Time
- Defect Detection
- Defect Resolution
- Mean Time to Restore / Mean Time to Detect
- Release Frequency
- Team Velocity

Figure 2: Measurement Context Diagram

See Part 1, Section 2.2 and 3 for more information

Unclassified Distribution Statement A: Approved for Public Release
Distribution is Unlimited
• An ontology and definitions are provided
• Terms provide a foundation for consistency – different teams, programs, and enterprises may use different terms
 - Synonyms provided

Figure 3

See Part 1, Section 2.3 and 3 for more information
Unclassified Distribution Statement A: Approved for Public Release
Distribution is Unlimited
PSM CID Measurement Framework
Example Indicators - 1

Burndown

Is completion of work on plan?

Committed vs. Complete

Is work delivered as committed?

Team Velocity

Is the team performing as expected? How much work can be accomplished in future iterations?

Cycle Time / Lead Time

How long does it take to release a viable product?

Release Frequency

How long does it take to deploy a feature/capability? What is the cadence or frequency for product release?

Cumulative Flow

Is work flow moving through value stream? Is the throughput of work predictable?

See Part 2, Section 8 for more information

Unclassified Distribution Statement A: Approved for Public Release
Distribution is Unlimited
PSM CID Measurement Framework
Example Indicators - 2

Defect Resolution
When are detected defects resolved? (aging)

MTTD / MTTR
How long does it take to detect and restore service incidents?

Defect Detection
How many defects were released (saves, escapes)?

Automated Test Coverage
How much of the testing is automated?

See Part 2, Section 8 for more information

PSM Continuous Iterative Development (CID) Measurement Framework
http://www.psmsc.com/CIDMeasurement.asp

Unclassified Distribution Statement A: Approved for Public Release
Distribution is Unlimited
Sample PSM CID Measurement Specification

- Description
- Relevant Terminology
- Information Need
- Base Measures
- Derived Measures
- Indicator Description and Sample
- Analysis Model
- Decision Criteria
- Additional Analysis Guidance
- Implementation Considerations

See Part 2, Section 8.2 for more information

PSM Continuous Iterative Development Measurement Framework

5.2 Burndown (Team, Product, or Enterprise Measure)

Description

Burndown is used to monitor completed work items (e.g., stories, features, capabilities) vs. planned work items for an iteration, release, or capability. Work items may include design, code, test, and all supporting activities (e.g., requirements development, configuration management and quality engineering). Progress toward completing planned work is depicted graphically to provide an indicator of the likelihood of meeting planned pace.

Relevant Terminology

See Section 2: Glossary and Definitions.

Measurable Information

- Information Category
- Measurable Concept
- Relevant Entities
- Attributes
- Data Collection Procedure
- Data Analysis Procedures

Indicator Specifications

Relevant Analysis Model

At the team level, the focus is generally on stories or story points through the release. Is the team completing the committed work items? Are they significantly behind or ahead of the burndown plan? Are items blocked? What is the likelihood of meeting the commitment on time? Can additional backlog stories be brought into the iteration? Are teams improving execution over time?

At the product level, the focus turns to features or capabilities across releases. At the enterprise level, the focus is generally on capabilities for external releases.

Decision Criteria

At the team level, lack of progress (e.g., not reducing open story points at all over several days) and variances from the plan (e.g., 5%) should be reviewed for action by the team. Data is generally not shared externally.

At the product level, variances of over 10% are reviewed for causes of roadblocks and consideration of replanning.

Figure 1: Release Burndown

In Figure 1, the teal line represents the number of open stories over time, while the blue line indicates the planned burndown. This chart shows a 2-month release, with weekly increments, where stories are completed.

At release planning, work items representing 60 stories were committed. While little progress was made during the first week to a planned training event, the teams recovered and is projected to complete the planned work by the end of the release.

Additional Information

- Use this metric with the velocity metric and other work progress metrics (e.g., test progress, page views).
- The velocity metric supports the planned story points for each iteration. The actual completed story points from the metrics is uploaded to the velocity metric. Features with other work and progress metrics may impact an assessment of overall risk and may impact prioritization of work for future releases.

Additional Analysis Guidance

- Consider trends of estimated burndown based on historical performance, e.g., test case, release, use case, release.

Implementation Considerations

Some teams may use new instead of story points (or may use story points in hours).

SED - Apr 2021

Unclassified Distribution Statement A: Approved for Public Release

Distribution is Unlimited
V2.0 - Additional Focus Areas
V2.0 Measurement Focus

• **Product Value (Part 2, Section 8.11)**
 - PSM Product Value Measurement (PVM) provides a scalable, and flexible approach to measuring product value from three stakeholder perspectives: user, acquirer, and supplier

• **Additional enterprise indicators** for current measures **(Part 2, Section 9)**

• **Software Assurance Measurement (Part 3, Section 10)**
 - Working Group evaluating appropriate security measurement

• **Technical Debt (Part 3, Section 11)**
 - **Technical debt** consists of design or implementation constructs that are expedient in the short term but that set up a technical context that can make a future change more costly or impossible. May be related to architecture, design, structure, duplication, test coverage, comments and documentation, potential bugs, complexity, or coding practices.
 - Excludes **mission debt** such as functional deficiencies, required capabilities or features that should have already been implemented but are missing (distinguished from a backlog of features not yet prioritized for implementation), or missing functionality or performance issues in COTS for a COTS-intensive system.

• **Prioritization**
 - Enhancements, product value, technical debt, mission debt, and security all need to be identified and prioritized in iterations and releases
Product Value Measurement

- **PSM Product Value Measure (PVM) provides a scalable, and flexible approach to measuring product value from various of stakeholders perspectives**
 - Product value can have different meanings for different stakeholders
 - Product value is based on satisfaction of multiple attributes or characteristics which are important to the stakeholders

- **This measurement approach can work for software, hardware, systems, projects, and services if pertinent stakeholders can agree on related attributes that need to be evaluated**

- **The PSM PVM depends on identifying the objective and key stakeholders of the measurement: The objective and stakeholders determine the product attributes that will be evaluated and their importance**

- **The measure determines the percentage of available score assigned to each attribute by the subject matter experts performing the measure**
 - The results can then be normalized to the desired units and scale and combined in terms of attribute categories, subject matter experts performing the measure, or even stakeholder interests

- **A common set of product attributes and common stakeholders are included as a starting baseline in the PSM PVM**
 - Related sets of attributes are grouped into attribute categories

- **Attributes can be added to the measure or tailored as needed to meet the objectives and stakeholders of the measure**

See Part 2, Section 8.11 for more information
Product Value Measurement

Product Value Depends on Perspective

- Which stakeholders?
 - User - Acquirer - Supplier

- Based on which factors or dimensions?
 - Categories - Attributes - Characteristics
 - Evaluation criteria
 - Timeliness (Impact of Delay)
 - Cost

- For which measures?
 - Qualitative - relative
 - Quantitative - tangible

Establishes a scale by which stakeholders can communicate the importance of capabilities, or products of interest.

Example - Product Value Attributes by Category

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Stakeholder User: Acquirer; Supplier =></th>
<th>U</th>
<th>A</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Does the system, product, or capability, perform to expected system measures of performance and effectiveness within expected, or contractual, system measure limitations?</td>
<td>U</td>
<td>A</td>
<td>S</td>
</tr>
<tr>
<td>9</td>
<td>Does the system behave gracefully when approaching resource limits such as large number of users or transactions; or increased demand?</td>
<td>U</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Does the system, product, or capability provide the results within expected, or needed response time?</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Does the system meet or exceed the most important specified mission technical performance objectives, thresholds, or properties in an operational environment?</td>
<td>U</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Does the system provide sufficient margin for future growth in performance required to accommodate anticipated future mission needs?</td>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core Attributes of User Stakeholder Value

- From the perspective of the end user or operator (ex. Pilot, infantry, maintenance technician, car driver, phone user, tablet user, etc.)
 - Usability and Operability
 1. Is the system, product, or capability, easy to use and operate?
 2. Are the system, product, or capability, easy to maintain and repair?
 - Functionality
 3. Does the system, product, or capability, perform to expected system measures of performance and effectiveness within expected, or contractual, system measure limitations?
 4. Does the system, product, or capability, perform to expected system measures of performance and effectiveness within expected, or contractual, system measure limitations?
 5. Does the system, product, or capability, perform to expected system measures of performance and effectiveness within expected, or contractual, system measure limitations?
 6. Does the system, product, or capability, perform to expected system measures of performance and effectiveness within expected, or contractual, system measure limitations?
 - Performance
 7. Does the system, product, or capability, perform to expected system measures of performance and effectiveness within expected, or contractual, system measure limitations?
 8. Does the system, product, or capability, perform to expected system measures of performance and effectiveness within expected, or contractual, system measure limitations?
 9. Does the system, product, or capability, perform to expected system measures of performance and effectiveness within expected, or contractual, system measure limitations?
 10. Does the system, product, or capability, perform to expected system measures of performance and effectiveness within expected, or contractual, system measure limitations?
 11. Does the system, product, or capability, perform to expected system measures of performance and effectiveness within expected, or contractual, system measure limitations?
 - Dependability
 12. Is the system, product, or capability, reliable and available when needed?
 13. Is the system, product, or capability, reliable and available when needed?
 14. Is the system, product, or capability, reliable and available when needed?
 15. Is the system, product, or capability, reliable and available when needed?
 - Safety and Security
 16. Is the system, product, or capability, safe and secure to use?
 17. Is the system, product, or capability, safe and secure to use?
 18. Is the system, product, or capability, safe and secure to use?
 19. Is the system, product, or capability, safe and secure to use?
 20. Is the system, product, or capability, safe and secure to use?
PSM Product Value Measurement Terminology

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Attributes</td>
<td>Characteristics of the product, system, or capability that are important to a set of stakeholders.</td>
</tr>
<tr>
<td>Product Attribute Assessment</td>
<td>A value assigned by the SME to indicate satisfaction of the product to the attribute criteria. Each SME assigns a score for each attribute.</td>
</tr>
<tr>
<td>Product Attribute Weight</td>
<td>A value between 0 and 1 indicating importance of the attribute to stakeholders. The sum of all attribute weights for a product evaluated by a SME is 1.</td>
</tr>
<tr>
<td>Product Value</td>
<td>The satisfaction of Product Attributes that are important to the product Stakeholders. It is the aggregation of the Product Attribute Assessments.</td>
</tr>
</tbody>
</table>
| Product Value Categories | Categories of Product Attributes related to product value.
 Usability and Operability: Ability of a product, system, or capability, to be easy to use and operate and effectively utilize personnel resources such as manpower and skills.
 Performance: The degree to which a system or component meets or exceeds technical requirements or delivery of capability that meet mission objectives with efficient system response and resource utilization measured or estimated under specified testing and/or operational environmental conditions.
 Functionality: Ability of a product, system, or capability, to provide or facilitate all the specified tasks and user objectives with the correct results and the needed degree of precision; and meet mission capability needs.
 Dependability: Ability of a product, system, or capability, to consistently performs it’s intended functions over time, recover from any failure condition, be available and operable when needed. Includes availability, reliability, recoverability, maintainability, and maintenance support.
 Safety and Security: Ability of a product, system, or capability, to resist cyber and/or physical interruption, intrusion, spoofing, or degradation of its expected operation and functionality.
 Business Value: Ability of a product, system, or capability, to satisfy: customer initial and total cost targets; supplier contract performance, including delivery when promised; and supplier financial expectations throughout its lifecycle. |
| Stakeholder | A group, or individual, that has vested interested in the Product Value, i.e. User, Acquirer, Supplier. An organization may have multiple interests in a product and therefore they may belong to multiple stakeholder groups. For example: a company may be a supplier, acquirer, and user of a product.
 User: perspective of the end user or operator
 Acquirer: perspective of the purchasing organization, or buyer of the product
 Supplier: perspective of the company or organization that develops and provides the product to the Acquirer |
| Value Point | Unit of measure of product value based on evaluation of attribute criteria weighted by importance to the stakeholder. |

See Part 2, Section 8.11 for more information
Example Use of PSM Product Value Measurement

• **Program Manager X will use the Product Value Measurement to determine which of 3 capabilities will be developed next**
 - This assessment will be repeated as the first capability approaches completion to prioritize the next capability to develop
 - The PM will look for the highest product value across the 3 capabilities but would like an emphasis on improving user experience

• **Objective:** Determine the highest value capability out of a set of 3 candidate capabilities to be developed

• **Ground Rules:**
 - There are 3 candidate capabilities. (A, B, and C)
 - The assessment will be performed by 3 SMEs (SME1, SME2, and SME3)
 - The SMEs are required to use attributes: 1-8, 14-16, 19-22. The weight for the others will be set to 0
 - The SMEs may set individual attribute weights as long as the total of attribute weighting will be 1.0. \(\sum W_{Ta} = 1.0 \)
 - The scale used for the raw score will be max of 100 for all attributes.
 - To emphasize improving user experience attribute category weights will be used as follows: Usability = 0.25; Functionality = 0.20; Performance = 0.15; Dependability = 0.10; Security = 0.10; and Business Impacts = 0.20
 - A maximum target score of 100 will be used to normalize the final product value scores
 - The highest score will be selected for development

• **The product value total score will also be used to scale the progress measures to indicate how much value is incrementally being added for each increment**

• **Raw Scores of each capability generated by the 3 SMEs are in Additional Information section**

See Part 2, Section 8.11 for more information

Unclassified Distribution Statement A: Approved for Public Release
Distribution is Unlimited
Example: Results

- 15 out of 22 attributes were used for the Product Value Measure
- Capability A has higher overall score and higher score in most attribute categories
- Capability C did have more Business Value than A
- Usability, Functionality, and Performance were the highest weighted categories and Capability A had higher scores in all three of these categories
- Capability A was selected for development even though Capability C scored higher for Business Value
- The Product Value of 69.9 was divided into the 4 planned increments to represent value provided by each
CID Enterprise Measurement

• Team and product measures are used for insight and action at those respective levels, AND also to meet the higher-level needs of the enterprise, including:
 - Governance
 - Ensure effective performance on programs

- Measures may be summarized, aggregated, or transformed

Information Needs:
• How are our projects or products performing?
• Are we meeting commitments?
• What is the quality of products or services we deliver across the enterprise?
• Is productivity improving?
• How accurate are our estimates?
• What is the process efficiency for programs, businesses, or products?

See Part 2, Section 9 for more information
How accurate are our estimates? Are commitments being met consistently (plan vs. actual)?

Iteration Estimate Accuracy - by Stoplight Threshold Criteria

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proj A</td>
<td>18.9%</td>
<td>33.1%</td>
<td>79.5%</td>
<td>91.8%</td>
<td>93.5%</td>
<td>94.7%</td>
<td>94.7%</td>
<td>94.7%</td>
<td>94.7%</td>
<td>94.7%</td>
<td>94.7%</td>
<td>94.7%</td>
<td>94.7%</td>
</tr>
<tr>
<td>Proj B</td>
<td>15.0%</td>
</tr>
<tr>
<td>Proj C</td>
<td>92.0%</td>
</tr>
<tr>
<td>Proj D</td>
<td>80.8%</td>
<td>86.2%</td>
</tr>
<tr>
<td>Proj E</td>
<td>79.9%</td>
<td>30.8%</td>
<td>82.5%</td>
<td>18.2%</td>
<td>33.3%</td>
<td>55.8%</td>
<td>77.4%</td>
<td>58.9%</td>
<td>18.2%</td>
<td>57.9%</td>
<td>97.6%</td>
<td>77.5%</td>
<td>89.9%</td>
</tr>
<tr>
<td>All</td>
<td>71.7%</td>
<td>93.7%</td>
<td>79.5%</td>
<td>84.6%</td>
<td>87.6%</td>
<td>81.7%</td>
<td>71.0%</td>
<td>78.6%</td>
<td>87.4%</td>
<td>72.4%</td>
<td>73.8%</td>
<td>74.8%</td>
<td>77.6%</td>
</tr>
</tbody>
</table>

See Part 2, Section 9.2 for more information

Unclassified Distribution Statement A: Approved for Public Release Distribution is Unlimited
What is the extent of automated testing conducted across the enterprise’s projects?

Is current capacity keeping up with demand? Is the flow of work proceeding through the value chain?

See Part 2, Section 9.2 for more information

Unclassified Distribution Statement A: Approved for Public Release
Distribution is Unlimited
Enterprise Indicators - 3

Defect Resolution

- **Defect Resolution Lag Time**
 - As of 19 Dec 19
 - **Defects**
 - Unknown: 0
 - Legacy: 0
 - 1: 02, 02, 03, 04, 05, 06
 - 2: 01, 02, 03, 04, 05, 06
 - 3: 01, 02, 03, 04, 05, 06
 - 4: 01, 02, 03, 04, 05, 06
 - 5: 01, 02, 03, 04, 05, 06
 - 6: 01, 02, 03, 04, 05, 06
 - Total: 02, 02, 03, 04, 05, 06

MTTR

- **Mean Time to Repair (MTTR)**
 - Defect Closed - Started (Days)
 - #Defects: 2,405
 - MTR (Days): 13.7

Velocity

- Aggregate Software Productivity
- Avg velocity: 1,229
- Net acceleration: 1.37

- Is productivity improving (more work completed per unit time)?

See Part 2, Section 9.2 for more information

SED - Apr 2021

Unclassified Distribution Statement A: Approved for Public Release
Distribution is Unlimited
Challenges for CID Measures at Enterprise Level

• Data collection
 - Periodicity of Collection, Transformation, Visualization
• Roles, Authority, and Accountability
• Varying Reporting cadence
 - Between multiple programs and enterprise
• Inconsistent Project Measures
 - Aggregation and validation issues
• Enterprise Indicator Types
 - Summarize while capturing relevant details

See Part 2, Section 9.1 for more information

Unclassified Distribution Statement A: Approved for Public Release
Distribution is Unlimited
Software Assurance Measurement

Emphasis on informing security considerations and measures throughout the life cycle

• Vulnerabilities, weaknesses, defects

• Resources and execution of SW assurance verification and validation

• Software code screened and tested

<table>
<thead>
<tr>
<th>Measurement Concepts</th>
<th>Recommended Software Assurance Measures (Initial Priorities)</th>
</tr>
</thead>
</table>
| Identification and resolution of vulnerabilities and weaknesses | • Identification of vulnerabilities (CVEs) and weaknesses (CWEs)
• Resolution of CVEs and CWEs
• Patches delivered to burn down and close vulnerabilities |
| Security defect tracking | • Counts of security defects (open, closed)
• Security defect attributes (e.g., severity, criticality)
• Security defect containment (saves vs. escapes) |
| Quality and security testing coverage | • Percentage of code base screened for vulnerabilities and weaknesses (developed code and non-developmental items)
• Security test coverage (code base, security controls)
• Security test case status (passed, failed)
• Trends in size of the attack surface |
Software Assurance Terminology

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Assurance</td>
<td>Software Assurance (SwA) is the level of confidence that software is free from vulnerabilities, either intentionally designed into the software or accidentally inserted at any time during its life cycle, and that the software functions in the intended manner [CNSS 4009]. This ideal of no exploitable vulnerabilities is usually unachievable in practice, so programs must perform risk management to reduce the probability and impact of vulnerabilities and related weaknesses to acceptable levels.</td>
</tr>
<tr>
<td>Common Weakness Enumeration (CWE)</td>
<td>Common Weakness Enumeration (CWE[^TM]) is a community-developed list of software and hardware weakness types. It serves as a common language, a measuring stick for security tools, and as a baseline for weakness identification, mitigation, and prevention effort.</td>
</tr>
<tr>
<td>Common Vulnerabilities and Exposures (CVE)</td>
<td>Common Vulnerabilities and Exposures (CVE[^®]) is a list of entries – each containing an identification number, a description, and at least one public reference – for publicly known cybersecurity vulnerabilities. CVE Entries are used in numerous cybersecurity products and services from around the world, including the U.S. National Vulnerability Database (NVD).</td>
</tr>
<tr>
<td>Common Attack Pattern Enumeration and Classification System (CAPEC)</td>
<td>Common Attack Pattern Enumeration and Classification (CAPEC[^TM]) is a community resource for identifying and understanding attacks. Understanding how the adversary operates is essential to cyber security. CAPEC helps by providing a comprehensive dictionary of known patterns of attack employed by adversaries to exploit known weaknesses in cyber-enabled capabilities. It can be used by analysts, developers, testers, and educators to advance community understanding and enhance defenses.</td>
</tr>
<tr>
<td>Common Weakness Scoring System (CWSS)</td>
<td>The Common Weakness Scoring System (CWSS[^TM]) provides a mechanism for prioritizing software weaknesses in a consistent, flexible, open manner. It is a collaborative, community-based effort that is addressing the needs of its stakeholders across government, academia, and industry.</td>
</tr>
<tr>
<td>Common Vulnerability Scoring System (CVSS)</td>
<td>The Common Vulnerability Scoring System (CVSS) provides a way to capture the principal characteristics of a vulnerability and produce a numerical score reflecting its severity. The numerical score can then be translated into a qualitative representation (such as low, medium, high, and critical) to help organizations properly assess and prioritize their vulnerability management processes.</td>
</tr>
</tbody>
</table>

[^TM]: Trademark
[^®]: Registered Trademark

See Part 3, Section 10.1 for more information

Unclassified Distribution Statement A: Approved for Public Release
Distribution is Unlimited
Information Needs for Software Assurance (Excerpt)

<table>
<thead>
<tr>
<th>Information Categories</th>
<th>Measurable Concept</th>
<th>Team Information Need</th>
<th>Product Information Need</th>
<th>Enterprise Information Need</th>
<th>Potential Measures</th>
<th>Notes</th>
<th>Category and Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Quality Process Performance</td>
<td>Security - Safety Process Effectiveness</td>
<td></td>
<td></td>
<td>What is the (overall) compliance with the mission-critical Risk Management Framework (RMF) controls established for a program?</td>
<td>RMF Controls</td>
<td></td>
<td>SwA-M</td>
</tr>
<tr>
<td>Product Quality Process Performance</td>
<td>Security - Safety Process Effectiveness</td>
<td>How quickly can we detect a software assurance event or vulnerability? (Monitor, Detect) How quickly can we respond to a software assurance event? (Resolve, Deploy) How well have you designed the system to recover?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SwA-M</td>
</tr>
<tr>
<td>Product Quality</td>
<td>Security - Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SwA-M</td>
</tr>
<tr>
<td>Product Quality (Customer Satisfaction)</td>
<td>Security - Safety</td>
<td>How much technical debt does the system have? What will it take to remove this technical debt?</td>
<td></td>
<td></td>
<td>Technical Debt Actions (Written, Committed, Completed) Effort/Cost to Resolve</td>
<td></td>
<td>TD-H</td>
</tr>
</tbody>
</table>

See Part 3, Section 12 for more information

Unclassified Distribution Statement A: Approved for Public Release
Distribution is Unlimited
Technical Debt

Technical debt consists of design or implementation constructs that are expedient in the short term, but that set up a technical context that can make a future change more costly or impossible.

- Debt from weaknesses in code constructs
- Debt from design and architecture decisions
- Debt from missing information items such as documentation shortfalls, missing information, IP issues.

11.2 INFORMATION NEEDS

Information needs related to technical debt include:

- How easy/difficult is it to update or refactor the design and code?
- Can the system architecture be expanded as the system continues to be developed and revised?
- When does it become too costly or take too long to maintain the design or architecture?
- How many defects are identified as technical debt?
- Is the documentation sufficient for user needs and for sustainability?
- When should identified technical debt be resolved, parts of the system replaced, or a new system started?
- What is the impact of this technical debt? Is it worth the investment and schedule to resolve it?

Mean Time to Restore (MTTR) / Mean Time to Detect (MTTD) (sec)

Operational services can be impacted if defects escape from development to operations. MTTR (restore) and MTTD (detect) are indicators of how quickly full service can be restored. Availability and reliability of deployed services, and impacts on operations, are key factors in assessing technical debt.

- Example use of CID measurement framework
- Tools
- Methods

See Part 3, Section 11 for more information
Recommendations for Adopting CID Measures

- **Define relevant team, program, and enterprise information needs**
 - Start by identifying the information needs that should be addressed - not the specific measures

- **Identify specific relevant measures to address identified information needs**
 - Define pilots for the measures, including product value

- **Develop leadership approach to review program and enterprise actions and decisions based on the measures**

- **Define how leadership will use relevant measures for fact-based decision making**

- **Consider guidance in CID Measurement Framework v2.0**

Next Steps

- Publish PSM v2.1 CID measurement framework - 15 April 2021
 - Support adoption and use
 - Consider additional measures to address additional priority needs
 - Size measures
 - Estimation and Cost Prediction
 - Draft measurement specifications for software assurance and technical debt
 - Additional measures for CID
 - Update Product Value Measure
 - Update all measures based on feedback from usage

- Ongoing community participation to improve the PSM CID framework
 - Join the PSM/INCOSE/NDIA WG (bi-weekly teleconferences)
 - Outreach and engagement with stakeholder groups (e.g., Security WGs)

See Part 1, Section 6 for more information
Acknowledgements
Acknowledgments

1.1 CONTRIBUTORS

Table 1: PSM CID Measurement Framework Editors

<table>
<thead>
<tr>
<th>Editors</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheryl Jones</td>
<td>Army Futures Command - DEVCOM AC</td>
</tr>
<tr>
<td>Geoff Draper</td>
<td>L3Harris Technologies / NDIA Systems Engineering Division</td>
</tr>
<tr>
<td>Paul Jansz</td>
<td>Army Futures Command - DEVCOM AC</td>
</tr>
</tbody>
</table>

Table 2: Core Team Contributors and their Organization

<table>
<thead>
<tr>
<th>Core Team</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rob Adams</td>
<td>Raytheon Technologies</td>
</tr>
<tr>
<td>Christopher Ashford</td>
<td>BAE Systems</td>
</tr>
<tr>
<td>Elizabeth Aikwood</td>
<td>Qantech Services</td>
</tr>
<tr>
<td>Jeff Bolding</td>
<td>OUSD (A&S): Software Engineering Institute</td>
</tr>
<tr>
<td>Katherine Bradshaw</td>
<td>US Air Force</td>
</tr>
<tr>
<td>Sean Brady</td>
<td>OUSD (A&S)</td>
</tr>
<tr>
<td>Ian Brown</td>
<td>Galorath</td>
</tr>
<tr>
<td>Brad Clark</td>
<td>Software Metrics</td>
</tr>
<tr>
<td>Mark Cornwall</td>
<td>OUSD R&E</td>
</tr>
<tr>
<td>Steve Cox</td>
<td>Telelogic Research</td>
</tr>
<tr>
<td>Holly Dunlap</td>
<td>Raytheon Technologies</td>
</tr>
<tr>
<td>Dennis Dziecie</td>
<td>Perspecta</td>
</tr>
<tr>
<td>William Hayes</td>
<td>Software Engineering Institute</td>
</tr>
<tr>
<td>Ronda Hanning</td>
<td>L3Harris Technologies</td>
</tr>
<tr>
<td>Stephen Henry</td>
<td>Defense Acquisition University (retired)</td>
</tr>
<tr>
<td>Joe Jarosnicky</td>
<td>Synopsys</td>
</tr>
<tr>
<td>Suzette Johnson</td>
<td>Northrop Grumman Corporation</td>
</tr>
<tr>
<td>Jonathan Kiser</td>
<td>The Boeing Company</td>
</tr>
<tr>
<td>William Luk</td>
<td>BAE Systems</td>
</tr>
<tr>
<td>Brian MacDonald</td>
<td>Raytheon Technologies</td>
</tr>
<tr>
<td>Jason McDonald</td>
<td>L3Harris Technologies</td>
</tr>
<tr>
<td>Lenday Mignola</td>
<td>US Air Force</td>
</tr>
<tr>
<td>Thomas Murphy</td>
<td>Silver Bullet</td>
</tr>
<tr>
<td>Andrea Niber</td>
<td>Leidos</td>
</tr>
<tr>
<td>William J. Nichols</td>
<td>Software Engineering Institute</td>
</tr>
<tr>
<td>Ken Naffier</td>
<td>GMU</td>
</tr>
<tr>
<td>Cory Ocker</td>
<td>Raytheon Technologies</td>
</tr>
<tr>
<td>Toto Powell</td>
<td>York Metrics</td>
</tr>
<tr>
<td>Carl Pullot</td>
<td>US Air Force</td>
</tr>
<tr>
<td>Don Reintzen</td>
<td>INCEPTUM</td>
</tr>
<tr>
<td>Gary Roddy</td>
<td>Lockheed Martin Corporation (retired) / INCOSE</td>
</tr>
<tr>
<td>Gene Rosenfelt</td>
<td>Northrop Grumman Corporation</td>
</tr>
<tr>
<td>David Rosenfeld</td>
<td>L3Harris Technologies</td>
</tr>
<tr>
<td>Lars Rosker</td>
<td>Raytheon Technologies</td>
</tr>
<tr>
<td>Benjamin Schuemeg</td>
<td>Army Futures Command - DEVCOM AC</td>
</tr>
<tr>
<td>Ben Short</td>
<td>L3Harris Technologies</td>
</tr>
<tr>
<td>Robert Simmons</td>
<td>Raytheon Company</td>
</tr>
<tr>
<td>Matthew Stahl</td>
<td>US Air Force</td>
</tr>
<tr>
<td>Carol Woody</td>
<td>Software Engineering Institute / CERT</td>
</tr>
<tr>
<td>Robin Yamas</td>
<td>Lockheed Martin Corporation</td>
</tr>
</tbody>
</table>

Thank you to the many contributors from PSM, INCOSE, and NDIA that helped to develop the CID Measurement Framework!

For more information or to join our team contact:

Cheryl Jones
cheryl.l.jones128.civ@mail.mil

Geoff Draper
geoff.draper@l3harris.com
Table 1: Additional Contributors to the Report

<table>
<thead>
<tr>
<th>Additional Contributors</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Barry Boehm</td>
<td>USC / System Engineering Research Center (SERC)</td>
</tr>
<tr>
<td>Cherie Brown</td>
<td>US Navy</td>
</tr>
<tr>
<td>Connie Bustillo</td>
<td>Lockheed Martin Corporation</td>
</tr>
<tr>
<td>John Carone</td>
<td>Raytheon Technologies</td>
</tr>
<tr>
<td>Yvette Chamberlin</td>
<td>L3Harris Technologies</td>
</tr>
<tr>
<td>Kevin Chapman</td>
<td>L3Harris Technologies</td>
</tr>
<tr>
<td>Dr. Robert Charette</td>
<td>ITABHI Corporation</td>
</tr>
<tr>
<td>David Chestnutt</td>
<td>NSA</td>
</tr>
<tr>
<td>Christopher Costello</td>
<td>Army Futures Command - CCDC Armament Center</td>
</tr>
<tr>
<td>Victoria Cuff</td>
<td>OUSD (A&S)</td>
</tr>
<tr>
<td>Kyle Davis</td>
<td>Quan tech Services</td>
</tr>
<tr>
<td>James Dowell</td>
<td>DOD</td>
</tr>
<tr>
<td>Rick Drey</td>
<td>Paradigm Shift / INCOSE</td>
</tr>
<tr>
<td>Kim Elliott</td>
<td>Raytheon Technologies</td>
</tr>
<tr>
<td>Joseph Etn</td>
<td>NDA Systems Engineering Division</td>
</tr>
<tr>
<td>Isma Elmasaz</td>
<td>L3Harris Technologies</td>
</tr>
<tr>
<td>Trevor Enos</td>
<td>US Air Force</td>
</tr>
<tr>
<td>Jen Garcia</td>
<td>Raytheon Technologies</td>
</tr>
<tr>
<td>Firas Guile</td>
<td>Raytheon Technologies</td>
</tr>
<tr>
<td>Matt Hinter</td>
<td>Northrop Grumman Corporation</td>
</tr>
<tr>
<td>Diane Julian</td>
<td>Raytheon Technologies</td>
</tr>
<tr>
<td>Matt Kennedy</td>
<td>US Department of Treasury</td>
</tr>
<tr>
<td>Jo Ann Lane</td>
<td>NSU</td>
</tr>
<tr>
<td>Jessica Lj</td>
<td>Lockheed Martin Corporation</td>
</tr>
<tr>
<td>Hyfilli Marbach</td>
<td>INCOSE</td>
</tr>
<tr>
<td>Matten Moore</td>
<td>US Air Force</td>
</tr>
<tr>
<td>Greg Niemann</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td>Victoria Perez</td>
<td>US Air Force</td>
</tr>
<tr>
<td>Bernard Reger</td>
<td>Army Futures Command - CCDC Armament Center</td>
</tr>
<tr>
<td>Carmela Rice</td>
<td>OUSD (A&S)</td>
</tr>
<tr>
<td>Laura Reselas</td>
<td>Lockheed Martin Corporation</td>
</tr>
<tr>
<td>Gene Rosenbluth</td>
<td>Northrop Grumman Corporation</td>
</tr>
<tr>
<td>Forrest Shull</td>
<td>Software Engineering Institute</td>
</tr>
<tr>
<td>Ramit Singh</td>
<td>Lockheed Martin Corporation</td>
</tr>
<tr>
<td>Roz Singh</td>
<td>Raytheon Technologies</td>
</tr>
<tr>
<td>Dan Strickland</td>
<td>Missile Defense Agency</td>
</tr>
<tr>
<td>Steven Verga</td>
<td>L3Harris Technologies</td>
</tr>
<tr>
<td>Marilyn Vickers</td>
<td>US Air Force</td>
</tr>
<tr>
<td>Gan Wang</td>
<td>BAE Systems</td>
</tr>
</tbody>
</table>