

Advanced CFX Cells For Military Applications

Engineered Power June 2017

www.engineeredpower.com

Overview

- Company Background
- CFX Electrochemistry
- CFX and Hybrid Cathode Development
- Performance Summary
- Safety Testing

Who we are

- Engineered Power headquarters is in Calgary, AB, Canada.
- Over 100 employees and a 40,000 SQF facility.
- Manufacturer of cylindrical non-rechargeable cells from 1/2AAA to

DDD and E. Scaled Manufacturing Installed **Engineered Power** Capabilities To **Automated CFx** Founded 60,000 Line Units/Month 2004 2008 2014 2017 Commercialized **Engineered Power** Lithium-Thionyl **USA Founded** Chloride Cell (Research Division) ENGINEERED POWER LP

Engineered Power Manufacturing Capability

- Calgary, Alberta
 - AAA to DDD Cylindrical Li Primary Cell Manufacturing
 - Li–Thionyl Cells Different Construction Styles
 - Low rate bobbin style
 - Moderate rate dual anode style
 - High rate spiral style
 - Li-CFx & Li-CFx/MNO2 spiral styles
 - 80,000 cell/month manufacturing capacity
- Duarte, California
 - Advanced Li Primary R&D
 - CFx-MN02 electrode coating

Product & Facility Pictures

DRY ROOM FACILITY

Product Philosophy

- Focused on cell design and manufacturing cells for extreme environments.
 - Cells can be customized to perform from -40 C to 225C.
 - Robust cells can handle shocks of up to 1000G.
 - All cells are manufactured with a glass to metal seal.
 - Primary chemistries including thionyl, CFX and Hybrid MnO2.
 - Customized cell designs meet any customer requirements.

CF_x Material Overview

- CF_x is an ideal material for many battery applications because it has:
 - the highest gravitational energy density of any material
 - low self-discharge rate
 - wide temperature range performance
 - high rate capabilities

Cathode	Discharge Potential (V)	Specific Capacity (mAh/g)	Specific Energy (Wh/Kg)	Energy Density (Wh/L)	Cathode Phase
CFx	2.7-3.0	860	2200	5940	Solid
MnO ₂	2.7-3.1	310	850	4240	Solid
SO ₂	2.7-3.0	420	1150	1650	Liquid
SO ₂ Cl ₂	3.5-3.9	397	1480	2380	Liquid
SOCI ₂	3.3-3.6	480	1580	2590	Liquid

Battery Comparison

Features	Lithium Carbon Fluoride	Lithium Sulfuryl Chloride	Lithium Thionyl Chloride	Lithium Carbon Fluoride Hybrid
Safety				
High Rate Capability				
Capacity				
Voltage				
Temperature Range				

DD CFx and Hybrid (CFx & MnO2) Performance

Established Products

CF_x DD Cell

Chemistry: 100% CF_x active material

Temperature: -20 to 150° C

A DD cell at 150°C is rated for a

capacity of 34Ah

Chemistry: Hybrid CF_X & MnO2 Chemistry

Temperature: -30 to 110° C

Hybrid chemistry provides cost benefit, high power A DD cell at 110° C is rated for a capacity of 34Ah

Hybrid DD Cells Tested at Different Temperatures

Hybrid DD Tested at 4A

Hybrid DD Tested at -20°C

Hybrid Cell Performance after 110C Storage

DD CF_X Tested at 750 mA

CF_x and Hybrid DD Capacity

Hybrid Thermal cycling

CF_X and Hybrid DD Specifications

	CF _x DD	Hybrid DD	
Open Circuit Voltage	3.3 V	3.3 V	
Typical Capacity @ Rated Temp	34 Ah	34 Ah	
Energy Density	535 Wh / kg	470 Wh/kg	
Operating Temperature	−20 to 150°C	-30 to 110°C	
Physical Dimensions	5.0 in (126.2 mm) x 1.25 in (31.8mm)		
Weight	185 g	210 g	

High rate capability of up to 5–10A continuous current.

Prototype CFx cells (D & E)

E CFx cell tested at 150C

Hybrid D Tested at Room Temperature

Hybrid D -29°C 2A continuous discharge

DD CFx & Hybrid Safety Testing

<u>Safety - External Short Circuit test</u>

Engineered Power simulated a short circuit on the new DD Li-CF_x cell. A short circuit was applied across the (-) and (+) terminals. To pass this test, the cell cannot exceed 170 C, and there can be no external damage or fire of the cell. The Engineered Power DD Li-CF_x and hybrid cells passed this test without the need of an external fuse or circuit.

<u>Safety – Impact Test – T6</u>

- This test simulates the crushing of a cell.
- Pass criteria for this test is the temperature does not exceed +170C & no disassembly or fire within 6 hours of test.
- Engineered Power passed this test with both CF_x and hybrid cell chemistries.

Nail Test

Engineered Power DD Cell passed this the nail test penetration with both CF_x and hybrid cell chemistries.

ENGINEERED POWER LP

Vibration and Shock Test

Vibration

- Test 1: 30-2000Hz sine sweep at 30G, 30min Z-axis (axial) and 30min X/Y-axis (lateral)
- Test 2: 5-500Hz random, 20G, 4 hours Z-axis (axial) and 4 hours X/Y-axis (lateral)

Shock

- 10 shocks in each direction (+axial, -axial, +lateral, -lateral) with total of 40 shocks at 1000G, 0.5msec duration.
- The DD CF_x and hybrid cells have passed both tests.

Collaboration with Pack Assemblers

- Engineered Power works with Pack assemblers to incorporate Li-Primary cells
 - Characterize thermal and performance properties
 - Optimize chemistry for end application
 - Modify cell interconnects for efficient pack manufacturing
 - Example: Pipeline Inspection Battery

Pack Assembler Partners

Next Step

- CFx & CFx/MN02
 - Working on ATEX, UL and UN certification
 - Analyzing market for AA and D cells
 - Scaling up the manufacturing from 10,000 cells a month to 30,000 DD cells a month.

Questions and Contacts

- Vince Visco
 - vvisco@engineeredpower.com
 - 310-940-7288

