
The NDIA’s Industry Practice Guide for Agile on EVM Programs provides practices drawn from lessons
learned by multiple aerospace and defense firms in their implementation of using Agile methods to
design and develop software in conjunction with using earned value management to organize, plan &
budget, analyze, and control Product Backlog and Baseline changes .

This Guide was originally released in 2016. Version 1.1 was released in 2017, and Version 1.2 was
released in March of 2018. Version 1.2 added a new section on Contracting for Agile and EVM and
Agile IBR Considerations.

This course was developed to present the information contained within the Guide.

The Guide assumes the reader has a basic understanding of Earned Value and Agile development
techniques, the training follows suit.

Different organizations use different terminology for similar things. For example, some use Epics for
large system capabilities, while other organizations use the term Capability. Some organizations use
Sprint and Iteration interchangeably, while others use Sprints only to refer to Scrum time-boxes, and
Iteration as a more generic term for any time-box (i.e. all Sprints are Iterations, but not all Iterations
are Sprints). This training does not try to recommend any specific terminology, and in general uses
Epic/Capability and Sprint/Iteration interchangeably. Instructors should use the terminology that best
suits the needs of the attendees.

General Instructions for Teacher:
Describe key points you would emphasize when presenting, especially if those words aren’t on the
slide
For busy slides and those with graphics/tables, describe the order in which you would present the
content
Consider notes regarding anticipatable/common student questions
Consider notes on dealing with “exceptions”, i.e., cases where the ideal isn’t possible, such as when
you can’t perform just-in-time release planning prior to performing rolling wave.

1

To summarize chapter 1 thru chapter 6
Planning is product based and done through iterative and incremental decomposition of
Capabilities/Epics and subsequently Features into smaller components of product
functionality.

The Guide provides the recommended approach for the WBS thru the CA and WP/PP level,
the IMP and the IMS to be used on an Agile development program. It also discusses program
performance measurement in an Agile iterative development framework long with the rules
and best practices to maintain control of the PMB when implementing baseline changes.
Chapter 6 begins with a definition of the agile process, intended for a
contracting / acquisition professional. The intent of considerations discussed
is identify which elements a contract could be approached for a contract
requiring EVM to measure progress when Agile is the preferred method to
deliver products in an iterative manner.

Appendix A is an EVM Agile Data Dictionary, with both Agile and EVM terms and definitions.
Appendix B provides examples of EVM Agile progress report charts.
Appendix C lists reference material pertaining to Agile Development and EVM
Appendix D describes in detail the method of building a product roadmap and conducting
Release Planning and Rolling Wave Planning Products

Appendix E provides the program reviewer with a list of artifacts
and processes that can be used to augment standard IBR artifacts
when evaluating programs implementing Agile methods.

2

3

Teaching Notes:
Convey the iterative, recursive nature of Agile planning. There are multiple levels of planning that refine the
understanding/definition of work to be done over the life of the project.
Focus is on the target (meeting business objectives), not the plan. Changing plans to adapt to changing customer needs or other
program circumstances is normal and expected.
Product Planning:
performed at the beginning of the program;
defines all contract scope at the Capability level in the product backlog;
Creates the product roadmap by time-phasing the product-backlog in accordance with contract milestones and deliverables
Provides the technical scope definition of the initial performance measurement baseline
Repeated as needed throughout the life of the program based on program progress and customer direction
Cadence Release Planning:
Defines features for the upcoming rolling wave and maps those features to specific work packages to establish the updated
earned value baseline
Features are decomposed from their parent Capabilities
May also be referred to as Increment Planning
There are two types of Releases:
1) Cadence Release – which is a time-based release and occurs on a regular schedule, typically quarterly, and is released

either internally for baseline management or externally to the client/production environment. Cadence Releases most
closely align to EVM Rolling Wave Planning and may result Schedule Variance if planned scope in the release are delayed
to a future release.

2) Capability Release – is a scope based release and is not held to a regular delivery schedule – the release will be issued
when it is ready, and therefore will not likely show a schedule variance, but would likely show a cost variance if it is late.

Sprint and Daily Planning
From an EVM perspective, Provides updated outlooks for in-progress features and work packages.
Sprint Planning includes breaking Features down into User Stories, assigning Story Points to the Stories, and Prioritizing the
Stories in the Sprint Backlog

Key Points:
•Agile planning starts at the beginning of the project with a definition of the scope of the entire project at a high level.
•The scope definition is refined throughout the life of the project through a series of regular Release Planning events.
•The Feature level scope definition coming out of Release Planning is aligned to/reflected in the IMS as part of Rolling Wave
planning.
•Release Planning is also referred to as Increment Planning in the Scaled Agile Framework (SAFe).

4

Teaching Notes:
• Illustrates the two separate hierarchies used in Agile, for Product, applicable to

WBS and measuring performance, and for Time, the cadence for planning and
work execution

• Separate Product and Time hierarchies allow work to be planned by periodically
assigning appropriately-sized products into selected Releases or Sprints.

Epic/Capability – customer required ability of the system that provides value
Feature – Part of an Epic which can be completed within an incremental release
Story – Part of a feature which can be completed within one sprint (also referred to as
iteration)

Key Points:
•Progress is measured by completion of Product, not passage of Time
•A Feature defines scope and is baselined; Stories are lower level work items created
by the team to implement the scope defined by the Feature

5

6

Teaching notes:
review the traditional components of EVM decomposition

7

Teaching notes:
Agile Product Backlog and Roadmap augment traditional planning artifacts and tools with
useful product-based information.
If the entire contract is for software development and related functions only, it may be
possible to remove the IMP as a CDRL and replace it with the Product Increment Roadmap,
assuming that the roadmap represents the comprehensive technical approach.
The Product Increment Roadmap is part of the IMP, but, not necessarily the entire IMP, as
the entire IMP / IMS represents all scope, even non-development scope, from contract
award to contract completion. If you are attempting to elevate or substitute a project IMP
with a Product Increment Roadmap, you will need to review and ensure that appropriate
scope coverage, across all areas, exists and allows for effective visibility into the required
events and accomplishments.
The Product Backlog is derived from the SOW and is used to construct the IMP and CWBS
the Product Roadmap introduces the time-phasing of the work that is used to lay out the
IMS/PMB

SOW = Statement of Work (scope provided by customer)
CWBS = Contract Work Breakdown Structure (MIL-STD-881)
IMP = Integrated Master Plan (includes high level program milestones (and ideally the
Release Plan)
RTM = Requirements Traceability Matrix
IMS = Integrated Master Schedule (at least to the Work Package level – typically the Agile
Feature Level)
PMB = Performance Management Baseline (cost estimates at Work Package/Feature Level)

8

Teaching notes:
emphasize the relationship between EVM planning levels and Agile Product and Time
dimensions.
Control accounts relate to Epics/Capabilities
Work packages relate to Features defined at Release Planning
QBD relates to the stories that implement the Features

Control Accounts and Work Packages comprise the PMB and are managed with
baseline control rules
QBD provide backup detail and are managed with backup data rules (not BCRs).

From the NDIA Guide: “What is most important, as illustrated by the black dashed
line, is
that there is a clear line established above which earned value is maintained, and
below which Agile
methods are preserved that provide Quantifiable Backup Data to support appropriate
baseline change
management.”

9

Teaching notes:
This slide brings it all together; shows the work defined in the Product Backlog in a
series of releases, mapping to the work schedule as a series of IMS tasks. IMS plan
supports critical path analysis.

Presentation order:
Define the Work: establish the Epics and Features that derive from the SOW
Plan the Work: determine the priority of the work in the product roadmap
Schedule the Work: map Capabilities and Features to your PMB, using the Roadmap
and program events/milestones to develop your time-phasing and critical path

10

11

- Need to emphasize that Stories are assigned to Features for performance
calculation, but also assigned to Sprints for execution

- Sprints are just time boxes (like a month or a week) and has no explicit scope to
claim performance against.

- Performance is always correlated from the Story (task, QBD) to the Feature (Work
Package) it is a part of, and Features eventually roll up to Capabilities (Control
Accounts)

- QBD details are in the Agile tool, not in the IMS but is traceable back up to the
highest level to the CA.

- An example is provided on the next slide

12

• Feature %C is calculated as story point weight of completed stories divided by total
story points of all the features associated with the work package

• Work package BCWP is determined by multiplying Feature %C by work package
BAC

• Story point weight is determined by the development team, is based on each
story’s complexity relative to a team-designated reference story.

• Earlier versions of the guide proposed alternative approaches for claiming earned
value based on Story completion status. Currently the recommended approach is
to include the full story point weight in the earned value calculation when the
story is completed (known as the 0/100 approach).

• Because the story points of in-progress stories are not included in the EV %C
calculation, you may see cost and schedule variances due to in-progress work.
However, this is normal and true for all projects, Agile and non-Agile, when dealing
with in-progress work. On Agile projects, the desire to avoid unfavorable variances
provides a good incentive for teams to ensure their stories are small enough to be
achievable within the planned iteration, a key Agile principle.

• As the product backlog is refined, stories may be added or removed, impacting the
earned value %C calculation. This is expected and a normal part of the
development process.

• The guide offers alternative methods for claiming EV based on work completion
that align with the different Agile methods. One example is using the completion
of Kanban process steps, rather than completed stories, to calculate EV %C. This
training focuses on the story-based earned value approach.

13

These are the formulas from the Practice Guide.

The Total Stories are the number of Stories at the time of the calculation. This will
account for added or deleted stories.

The first is Feature % Complete. Basically it is the Sum of the Completed Story Points
divided by the Total Planned Story Points in the Feature.
As in the previous example it can be used to determine BCWP.

The Second Equation to calculate remaining effort can be confusing. It is important to
understand that the Total hours for Sprints to Date relate strictly to the Feature you
are evaluating, not the entire effort.

The Feature Remaining Effort Hours (essentially the ETC) can be calculated by:
- Step 1: First determining the remaining number of Story Points by subtracting the

Sum of Completed Story Points [at the time of the calculation] from the Total
Planned Story Points [number of story points in total you have for the Feature at
the time the calculation is made

- Step 2: Next, divide the total number of hours spent on the Feature to date (the
ACWP) by the Total Completed Story Point for the Feature

- Finally, multiply the Remaining Story Points (step 1) by the Average number of
hours per Story Point (step 2)

- This can also be calculated in dollars if that information is available

14

This slide shows two views of a sample backlog chart showing the number of story points completed for each sprint, The top
chart shows “Release Velocity by Team” and the bottom shows the “Total Release Velocity” at the program level. Velocity (story
points completed per sprint) is represented by the bar, and average velocity is represented by the moving average line from
sprint to sprint.

Velocity is simply the average amount of work completed over a period of time.
It is most commonly understood to be the Number of Story Points Completed per Sprint, but could also be calculated as the
Number of Features in a Release, or number of stories per Sprint. For this example, we are referring to Story Points/Sprint.

The first chart shows the Velocity of 3 Scrum Teams during a release.
- Teams 1 & 2 show the “ideal” increasing velocity trend, while their specific velocities differ from one another.
- Team 3, however, shows a more erratic velocity (demonstrated with the 2-period moving average)

Velocity can be thought of similar to a learning curve. When a team first forms, they are getting acclimated to the technical
work, as well as team forming into the Agile process, so Velocity is expected to be lower at first and increase over time; until a
point where the team hits a sustainable velocity and becomes predictable and can level off or continue to improve with each
cycle.

The second chart shows the Total Release Velocity – with all 3 teams velocity added together. While you shouldn’t compare one
team’s Velocity to another (unless the story points are normalized across teams), it is acceptable to add the velocities together
to understand the overall capacity of total project team.

Velocity can be useful as a measure of a Scrum Team’s CAPACITY to Complete Work in estimating future efforts, which can be
used in forecasting (as shown on the next slide).

Since Velocity is based on Story points, it is important to remember that it is a metric that is specific to a Scrum Team and
shouldn’t be compared across the program, as Story estimation is unique to a Scrum team.
There is a difference in comparing of team velocities, versus the addition of the velocities. For example, it would be incorrect to
assume since team A has a lower velocity than team B, that team A is producing less product. However it is legitimate to use
their cumulative velocity of 25 pts/sprint (=10 + 15) to predict future cumulative story points completed. For example, if team A
averages 10 pts/sprint, team B averages 15 pts/sprint and team C averages 20 pts/sprint, then the project as a whole averages
the sum of those, or 45 pts/sprint. As long as the makeup of the teams do not change, the project should average 45 pts/sprint.
Normalization is important when we correlate story points to another work attribute, for example points per hour or points per
line of code; these will differ by team and if these measures are desired, normalization is required.

What questions can the room think to ask from the data on this chart?

15

This chart is taken directly from the NDIA Agile Guide. The Start Bar shows the number of Story Points at the Start
of the second release (assume end of Release 12), and then shows the remaining story points at the end of each
successive sprint (13-18) with projections to sprint 20.

Similar to a Release BurnUP chart, there is also a Release BurnDOWN chart. Both charts show the same date, but
from a different view.

Where a BurnUP chart can show “will we complete all of the assigned tasks on time?” The BurnDOWN chart is
useful to predict “When are we expected to complete all of the assigned tasks?”

The gray line across the top is the total cumulative story points in the backlog and is showing the change in total
story points over time, adjusting for additions and deletions.
The gray bars indicate the number of incomplete story points at the beginning of each sprint, with the Start bar
always equaling the current total story points in the release backlog and the remaining bars equaling the height of
the previous bar minus the sprint velocity.
The solid orange line is Velocity (as previously discussed) and is represents the capacity of the team to complete
work (as recent past performance could indicate future performance (similar to CPI or SPI).
The solid blue line shows the current completion trend.

To determine “when we are expected to complete the remaining backlog, the blue line is extrapolated to the
point where it crosses the x-axis (remaining points = 0). In the example shown, there were
- Optimistic (purple dotted line) which looks like it assumes future work to complete at the same rate as

presently executing (best of the last n iterations) and should complete in Sprint 20
- Most Likely (blue dotted line), average velocity of the last n iterations, still has a chance to complete in Sprint

20
- Pessimistic (orange dotted line), worst of the last n iterations, may actually push overall completion to a 21st

sprint

Work that is not completed as planned within a release is re-prioritized in the backlog and moved to the next
release

There are various ways to calculate completion dates, the important thing is that, similar in EVM, it is
documented, justifiable, and consistent.

What questions could you ask given the data in this chart?
What concerns should the students have?

16

17

1) Requirements are understood at a high level, but we also expect some level of change to emerge
as Stories/Features are built and new knowledge is gained. It comes down to having the
appropriate level of granularity of the Feature exit criteria; detailed enough to have a good
foundation of “what”, but not so prescriptive as to inhibit beneficial change. “Stories are not
stand-alone requirements, in that they represent a statement of intent rather than a contractually
required behavior” (Leffingwell)

1) The program does Rolling Wave planning at Cadence Release points to allow for flexibility and
discovery. Rolling wave planning occurs after the Release Planning Event. The current release is
detail planned and decomposed into “Feature Work Packages”. Budget for future releases
remains in Planning Packages.

3) The Contractor should establish a Freeze Period that supports the flexible nature of Agile
development. Discovery and change are a normal part of Agile development, and change
assessments occur frequently

• at 3 month Cadence Release points, the Contractor may want to establish a short freeze
period, perhaps a 2 week forward window, or the current Sprint Period of Performance
(POP). A traditional freeze period such as “current month plus 1” will greatly limit the
program’s ability to respond to change quickly. A Contractor’s freeze period should be
defined in a way to support Agile and EV.

• ALSO MENTION HERE HOW GREAT FOR THE CUSTOMER TO BE INVOLVED AT CADENCE
RELEASE PLANNING TO INCORPORATE HIS LATEST KNOWLEDGE/NEEDS of THE WAR
FIGHTER.

• Customer involvement/role should be identified in the program kickoff. Will the
customer be the Product Owner or a Stakeholder when it comes to prioritizing
the features in a release?

18

The objective of Agile Cadence Release Planning/EVM Rolling Wave Planning is to establish and detail plan the functionality
to be implemented within the program’s next Cadence Release/Rolling Wave period.
In a large program where both Agile and EVM is in practice, Rolling Wave planning that typically occurred on a traditional EVM
program. Rolling wave planning on a traditional EVMS program is done every 6 or 12 months or at major milestones can be
replaced by a Rolling Wave Planning at Agile Cadence Release events. Cadence Release events are nominally held every two to
four months. In this way the strong planning rhythm offered by Agile enables Rolling Wave planning in traditional EVM to be
taken to a new level of currency and accuracy, supported by Agile planning practices.

Allowing programs to wait until after the planning meeting is held for the next increment of work before finalizing the detailed
plan should minimize changes once the work has started.

The Cadence Release Plan defines the set of Features that have been refined from Epics/Capabilities on the Product Roadmap
that will be implemented within the Agile Cadence Release/EVM Rolling Wave period.

The CAM uses the output of release planning (updated Product Backlog and Product Roadmap) to implement the EVM Rolling
Wave Plan:

Planning packages are converted to work packages (remember the work package contains one or more Features.
Features are decomposed into Stories which are sized to facilitate the measurement of progress. The
Feature(s) are input into the IMS along with predecessor/successor task relationships, and then fed into
the earned value engine. Then compared to the Product Backlog and Product Roadmap to insure
consistency and traceability

Care must be taken to promptly recognize and capture impacts from the release planning events into the EVMS PMB as needed
before the work starts. This time sensitive flow needs to be addressed in the contractor’s EVM System Description to ensure
the freeze period for Agile scope does not conflict with the defined baseline change control rules.

19

Freeze period considerations: The Contractor should establish a freeze period that supports
the flexible nature of Agile development. Discovery and change are a normal part of Agile
development, and change assessments occur frequently. A Contractor’s freeze period should
be defined in a way to support Agile and EV.

Explain how the freeze period relates to Rolling Wave Cycle
A typical Agile business rhythm holds the release planning meeting for the next increment of
work at the end of the current increment, just prior to the start of the next increment or
Cadence Release cycle. The Cadence Release event is the opportunity to get customer
involvement. Rolling wave planning tied to Cadence Release event is not only for the latest
information set into the plan but for customer collaboration to have their input on that which
is most important to them and the war fighter.

It is acceptable to decompose planning packages and create work packages inside the current
period for work that has not yet started. The detail plan must be approved prior to the start
of the work, and such an approach must be compatible with the contractor EVM System
Description.

First bullet: However, the approval cycle of a change(s) to a contractor’s EVM System
Description can be up to and longer than one year. The Contractor should document the
Agile process used in the interim along with the plan for updating the system description

Second bullet: The customer should be highly integrated into the release planning process,
with ample opportunity to provide input on the plan if there are concerns.

Third bullet: The detail plan must be approved prior to the start of the work, and such an
approach must be compatible with the contractor EVM System Description.

20

The intent of GL 29 is to reconcile current budgets to prior budgets in terms of
changes to the authorized work and internal replanning in the detail needed by
management for effective control.

To do this you need to establish a relationship / traceability path between the Agile
artifacts and the EVM artifacts.

A Release Roadmap is maintained that documents the prioritized product Backlog.
Epics and Features on the Product Backlog are mapped to specific releases as part of
the Product planning process

The Product Backlog includes a coding structure that traces to the CAs and to the EV
engine.

The intent of GL 29 is to reconcile current budgets to prior budgets in terms of
changes to the authorized work and internal replanning in the detail needed by
management for effective control.

To do this you need to insure that consistency and traceability can be demonstrated
between the Agile artifacts and the EVM artifacts.

21

Baseline change scenarios
Page 23 – 24 of NDIA Guide, Lets walk through them

Scenario 1 – Review Scenario. The scope of the WP did not change so no change will be made to the
work package. A negative schedule variance result in the earned value data. The stories are moved to
the next release in the Product Backlog

In Scenario 2 - This is a contractually directed change. Explain Scenario, PMB and Backlog on chart.
1) the WP is closed, BCWS is set = to BCWP. The remaining BCWS is transferred to Undistributed
Budget until the Mod is dispositioned/definitized. The subject unfinished Stories, Features,
Epic/Capability(s) are removed from the Product Backlog and Product Roadmap.

Scenario 3 – Explain Scenario, PMB and Backlog. The Contractor needs to establish the definition of
product and the Definition of Done at the Feature and Epic level to allow for the creation, removal,
and modification of Stories that are developed to satisfy the Feature and Epic functionality without an
impact to budget or scope. Requirements are understood at a high level, but we also expect some
level of change to emerge as Stories/Features are built and new knowledge is gained. It comes down
to having the appropriate level of granularity of the Feature exit criteria. Detailed enough to have a
good foundation of “what”, but not so prescriptive as to inhibit beneficial change

22

Forecast change scenarios
Page 26 – 27 of NDIA Guide, Lets Walk Through them

Scenario 1 - – 1) Discuss Scenario, PMB and Backlog In this case it’s simply a matter
of the work not being able to be completed in the original time span. This is an
unlikely scenario, moving sprint 1 stories to sprint 4. More realistic would be sprint 1
stories push into sprint 2, which pushes other stories in Feature to sprint 3,
consequently moving stories in Sprint 4 beyond the baseline finish date..

Scenario 2 – 1) Discuss Scenario as written on chart, 2) User Stories are developed
and maintained below the level of the EVM PMB. The Work Package/Feature level
defines the “definition of done” (scope needed to achieve to complete the WP). The
Stories/QBDs describe how the intent of the Feature/WP will be satisfied. 3) Discuss
PMB and Backlog - (Give example of how change removal of a QBD results of
decreasing performance)

Scenario 3 - 1) Discuss Scenario, PMB and Backlog Feature movement like this is not
unusual, and should be done is close collaboration with the customer.

23

This section discusses contracting best practices for including Agile and EVM
disciplines in government contract solicitations.

The purpose of including both an Agile development methodology and EVM on a
contract is to drive collaboration on the product with a heightened awareness of
schedule and cost. EVM is not tied to any specific development methodology and
does not prevent the use of other risk management techniques. EVM and agile
development are complementary and can be used on the same project. Agile
development can be used to incrementally deliver functionality to the customer while
EVM provides a standard method for measuring progress. (A-11 Capital Programming
Guide (July 2017).

24

Intent of this definition it to spread awareness and update thinking that each and every
change in a requirement is a put or a take within the contract. Yes, requirements will be
managed and the authority to implement change at the contract level remains the same,
however, each contracts representative on the buying and selling side should be connected
with each of the PMOs, product owners and stakeholders to assist in managing change and
product business value.

First bullet: Agile product requirements expressed as desired outcomes rather than specific
details about how the work is to be performed.
Second bullet: different layers of change management; for example contract change (scope),
baseline change (rolling wave), engineering change (QBD management)
Third bullet: Agile Manifesto: customer collaboration over contract negotiation; Agile
Principle: Business people and developers must work together daily throughout the project
Fourth bullet: The final product should be thought of as a set of features or capabilities (a
truck with towing ability). When choosing to utilize the agile process, the collaboration
occurring during each iteration, will focus on refining the individual pieces of each feature
(the type of hitch). That flexibility should occur. However, if a change is encountered that
will change the make-up or the vision of the final product (no hitch or a car), that change will
drive contractual change, such as an ECP.
Fifth bullet: Consider including a definition of done as part of the contract objectives. If not
as part of the contract, as part of the exit / completion criteria for reporting EV on work
packages / features. Also related to the acceptance criteria of the feature, that is also
conveyed in the user stories. This is another way that collaboration and expectations of the
produce resonate throughout the agile process execution.

25

For Agile acquisition, a SOO with stated objectives is recommended. If a SOO is
provided, the government will normally expect the contractor to provide a SOW or a
performance work statement (PWS) as part of its proposal. A government-provided
SOW is best suited for a traditional acquisition in which the government has a high
degree of confidence in the ability to specify (both qualitatively and quantitatively)
the expected approach and product end state.

First table above highlights the differences between a SOO and a SOW.

The scope defining document (SOO, SOW, or PWS) should communicate the product
required, the quality to standards to be achieved, the required date and any schedule
or intermediate deliverable items required. An Agile product is not a pre-defined,
prescriptive set of requirements. For the Agile methodology to be effective, the seller,
buyer and product owner must work together and such collaboration and flexibility
must be documented in the contract and scope control document. It is recommended
that the documented requirements are flexible enough to not establish impediments
that inhibit the contracting officer to use the right clauses to bound the contract and
manage change in execution.

Second table above provides a comparison between a SOO, PWS and SOW.

26

For Agile acquisition, a SOO with stated objectives is recommended. If a SOO is
provided, the government will normally expect the contractor to provide a SOW or a
performance work statement (PWS) as part of its proposal. A government-provided
SOW is best suited for a traditional acquisition in which the government has a high
degree of confidence in the ability to specify (both qualitatively and quantitatively)
the expected approach and product end state.

Table above provides a comparison between a SOO, PWS and SOW.

27

Section 6.3, starting on page 32 of the guide discusses 9 considerations for incorporation into the contract. The first 5 are new concepts and the
buyer and seller should agree on this items during negotiations. The last 4 are not new, but, should be approached in a new way.

Definition of Done (DOD) - (AKA acceptance criteria), Does the produced working software matches the product vision? Recommended to
develop this in parallel with negotiations and include as an appendix. The acceptance criteria (Agile) should be consistent with the exit criteria
(EVM) of the work packages.
Include a mechanism in the contract to verify this, such as a demo. If not a demo, a documented provision to account for the selling off of
requirements to verify the software produced matches the product vision. Elements to consider for the Definition of Done include, and are not
limited to: scope of tests to be conducted and passed, code reviews, coding standards, and code has been re-factored where necessary. The
Definition of Done can be defined at various levels, for a story, a feature, a sprint and / or a release.
Product Owner Responsibilities (Customer Interaction) - Include a provision to address the key responsibilities of the Product Owner (the person
directing the business value), defining customer interaction. Examples include, and are not limited to: the initial development and prioritization of
the product backlog, potential co-location with team, ongoing revisions and re-prioritization of the product backlog and participation in relevant
Agile ceremonies (planning, review, demo, sell-off). It is recommended that the Product Owner / Customer “Proxy” be included on the Buyer IBR
team.
Development Team Responsibilities - Include a provision to address the key responsibilities of the development team. Examples include, and are
not limited to: the team composition and skill set, time commitment (dedicated or not), a specific number of teams for the contract, potential
team co-location and the potential for reassignment without buyer permission.
Iterations – An iteration (a fixed time box) can be an increment, a release, a capability drop – define for the solicitation that definition. Make a
distinction of timing of the purpose of the iteration or a grouping of iterations – whether it is an internal release for developers or a push to
production. How can the solicitations be approached in more of an iterative way through the use of definitizing options associated with certain
incremental objectives established? Modular contracting? Task Orders? Examples include and are not limited to: agreements to run a series of
iterations, plan and implement each iteration according to a preselected methodology, require written minutes as output from planning sessions,
and synchronize Agile Release Planning with EVM Rolling Wave Planning.
Planning - Does the contract need to include a provision for formal planning? Examples include, and are not limited to: key roles defined, SOW
includes product vision and outcomes, high priority items identified in the contraction, process for prioritization / re-prioritization / equivalency
swaps, expectations for meeting attendance, and synchronize Agile Release Planning with EVM Rolling Wave Planning.
Reporting –Include a provision for how reporting, including metrics and performance measures will be different. The Agile metrics and EVM data
should report a consistent story. Examples include, and are not limited to: working software, modified Software Development / Enterprise
Performance Life Cycles, test plans per sprint, sprint burn down charts, product backlogs, epic and release burndown and velocity. Utilize sprint
reviews and Technical Interchange Meetings;
Testing - Does the contract need to include specific testing provisions? Examples include, and are not limited to: multiple testing subcontractors,
outsourcing impact to quality, outsourcing impact to team, success metrics defined, integration of outsourced effort, and accounting for the cost
of technical subcontract management.
Fixed Price vs Cost Plus - Agile and EVM can be implemented under both Cost type and Fixed price type contracts. While a cost type contract can
allow more flexibility, Buyers often feel that they are not able to control program costs given an open-ended contract with only desired
outcomes. Using a modular or incremental approach can be an effective scope and cost control mechanism. Under an Agile and EVM Fixed price
contract, the Buyer knows exactly how much the effort will cost, with scope, and schedule firmly established, the Buyer and Seller must adopt a
cooperative program management process that allows the development team the flexibility to make equivalency trade-offs to achieve a workable
product within the constraints of the contract.
Payment Milestones - Performance based Milestone payments may be appropriate (See FAR 32.10) for agile development contracts.
Consideration should be given to establishing payment milestones during contract negotiations, allowing for the payment of costs, award or
incentive fees. The IMP / IMS may be used to provide insight into schedule critical path(s), performance risks, and milestones at which risk is
retired that should be considered in the selection of payment milestones. It is recommended to not be overly prescriptive. The payment
milestones should be based on significant events or accomplishments and not a specific list of features or number of sprints or releases to be
completed. Let the Agile process deliver the product and the payment milestones be based on significant events or accomplishments. The
engineering should not be constrained by business and a rigid payment milestone schedule.

28

Section 6.4, starting on page 34 existing clauses and agency policy citations are referenced. It provides a cross reference for a list of potential
clauses to be considered when contracting for Agile and EVM.

Key take away: The notification of EVM on a solicitation or contract does not change with the addition of the Agile methodology. There is not
clause or provision for Agile that is being added to the solicitation. Consider minimizing CDRL duplication and overlap, specifically for System
Engineering and Design, by finding lightweight ways to sustain your required Plans and approach documents to capture approaches,
considerations and nuances associated with your Agile implementation (such as rhythms, ownership, etc.).

Despite any policy references to dollar thresholds, any of the clauses referenced in the guide can be included on a contract should the risk
warrant its inclusion. Despite the summary of policy included in this section, the clauses included in the contract awarded will drive contract
execution. The list is provided for reference for applicability and is not intended to be a comprehensive set of instructions or exhaustive
instructions for contracting for EVM and Agile and will vary by the issuing agency.

EVM References - The Federal Acquisition Regulation (FAR) Subpart 34.2 (34.201, Policy) states: “An Earned Value Management System (EVMS) is
required for major acquisitions for development, in accordance with OMB Circular A-11. The Government may also require an EVMS for other
acquisitions, in accordance with agency procedures.” Agencies may define their EVMS requirements in agency supplements to the FAR with
specific instructions, orders, and guides in accordance with the A-11. Agencies without supplemental guidance reference FAR Subpart 34.2 and the
related FAR solicitation or contract clauses.

Performance Based Contracting- When contracting for an Agile methodology, it is recommended to include provisions for performance based
contracting and use of a SOO. 2 references: Seven-Steps to Performance-Based Acquisition (guide/instructions for SOO, PWS and QASP etc.) and
DAU Service Acquisition Mall provides tools and templates to create a performance-based service acquisition requirements

Contractual Reporting and Data Deliverables
- Contract reporting is directed by contract clauses and data item requirements.
- In an Agile software development contract, the working software being developed as a component of the final product is the primary

deliverable. Consider modifications to the CDRL expectations given the iterative development fashion and the customer involvement in various
activities, such as allowing for "as-built" CDRL's or elimination of CDRLs no longer needed.
- In EVM, the Integrated Program Management Report (IPMR) is the primary CDRL. The Agile details underpin the EVM data and the entire set of

reporting and management data should work together to tell a consistent story and provide more accurate, timely and reliable data.

The following types of CDRLs are identified as being impacted by the Agile process and future guidance is forth coming to expand information:
System Engineering CDRLs
Design CDRLs (depending on contract)
SW CDRLs
Test CDRLs
Training CDRLs
Program Management CDRLs (including EVM IPMR)
Agile Reporting Metrics
IMP (see Section 3.2)

29

Agile Principle #2: Welcome changing requirements, even late in development. Agile processes harness change for the
customer's competitive advantage.

Section 6.5, starting on page 36 discusses the different types of change – changes in requirements, EVM baseline change and
contractual change. Intent of this section is to continue to spread awareness and update thinking that each and every change in
a requirement is a put or a take within the contract.

Bullet 3: When interpreting change on an Agile and EVM contract, the fundamental consideration of each change should focus
on the scope of the contract: Consider the highest level “requirement” or product. Is the highest level product changing? Are
the boundaries of the requirements or product purchases changing?

Bullet 4: The section continues with a discussion of the Contracting Authority roles, which has not changed. Note: the product
owner does not contracting authority.

Bullet 5: The section end with suggested Program Management Process adaptations for Agile and EVM. How can a PM adapt
the existing mechanisms to communicate and manage change?

Key take away: Agile, due to its very nature allows (or often encourages) pivots in various directions as the work progresses
and more is known. This characteristic can present contractual issues unless:
- Contractual requirements are stated in terms of desired or functional outcomes.
- The work and/or cost are constrained through an appropriate contractual mechanism.
- The CAM and Product Owner along with the PM should consider the types of change and be aware of the types of change
within the Agile process execution and consult on a regular basis with the contracts officer to confirm the type of change

Closing Thoughts:
What do you think? Will you include both Agile and EVM on a solicitation? What is the value of doing EVM on Agile projects?

Future Thought Item:
Agile acknowledges that the future product to be delivered requires further definition (within the scope of the contract) and is
an excellent mechanism to focus on what was done today and what will be done tomorrow. The Agile methodology alone may
not provide comprehensive insight for cost and EAC management at the contract level. The contract identifies all scope to be
completed, for all WBS items. EVM provides a mechanism to track how the product is evolving within the scope of the product
WBS defined on the contract. In addition, EVM provides insight for the non-product WBS scope defined on the contract. Using
Agile and EVM together complement the technical progression, scheduling, and total cost assessment of all scope throughout
execution, providing a comprehensive strategic view across the entire WBS of the contract. The purpose of including both an
Agile development methodology and EVM on a contract is to drive collaboration and insight on the product with a heightened
awareness of schedule and cost. EVM is not tied to any specific development methodology and does not prevent the use of
other risk management techniques. EVM and agile development are complementary and can be used on the same project. Agile
development can be used to incrementally deliver functionality to the customer while EVM provides a standard method for
measuring progress (A-11 Capital Programming Guide (July 2017).

30

31

32

33

34

Using Agile you can track your EV metrics using the Agile Release Plan, Burn Up chart
and underlining data and QBD of Story completed against features, Backlog, and
Velocity.

Here’s how Agile relates to these
• Timeline: Center dashed line marked Time Now shows left as the past and

right as the future.
• Blue line - Agile Release Plan is the schedule at the feature level and

represents the BCWS in EV. This plan will be revised with each rolling wave.
First, starting with the backlog and then the plan is adjusted over time. This
gives the BAC.

• Purple line is the Agile Burn Up which is the completed work or BCWP in EV
at Feature or WP level. It also represents the percent complete. In the
future the dotted line represents the remaining backlog to complete the
Feature or WP based on past velocity.

• Green line is Agile actual cost to do work performed or ACWP in EV.
Projecting this into the future yields the EAC and future is estimated by
Velocity times Remaining Backlog (where velocity has been dollarized).

• Historical velocity and remaining backlog are used to do forward
estimation.

• Cadence releases should align with rolling wave planning.

35

For reference only

Not expected to be briefed, only included for reference

36

Brief description of this chart
This chart displays the Agile “burn-up” metrics via the bar graph (using the axis on the left),
along with the Earned Value metrics via the lines (using the axis on the right).
Gives the ability to visually see any disconnects or trends.

How is this chart used?
This chart is used to compare the Agile Metric data of work completed over time, to the costs
expended and the EV plans that were established. Based upon the chart, the reviewer can
determine if the program is trending to meet both cost and schedule per their plan.
Key for chart:
• EAC for the increment/release (salmon line)
• Budgeted Cost of Work Scheduled per week (purple line)
• Actual Cost of Work Performed per week (blue line)
• % of work completed in Agile Tool (bars)
• Cumulative - ACWP in blue, BCWS in purple, sprint bars - shows how as each sprint

completes incremental progress towards the milestone

What is this chart telling us?
• In this example you can see that around Week 4 the trend showed that more work was

completed then planned, however, the costs are relative to the work completed,
representing no cost variance even if there was a slight positive schedule variance. For
example, at week 4 the BCWS is about $50,000 but the ACWP is about $60,000, so this is
showing a favorable schedule variance.

• Starting around Week 5 and 9 the trending data started to show that more costs were
expended than the work completed, hence trending to a cost variance.

• EAC and ACWP are going down over time – puts in question how realistic this example
may be.

37

38

The Product backlog
• Comprises the full scope of work required to satisfy the contract
• Scope is defined by Epics/Capabilities and Features. Note: Epics/Capabilities may

optionally be decomposed into one or more levels between the Epics/Capabilities
and the Features to help understand the product decomposition and facilitate
planning, but any additional decomposition does not fundamentally alter the road
mapping or planning processes.

• Backlog items include sizing information
The Program Product Roadmap provides a high level time-phasing of the backlog

• Ordering of work is geared toward providing a logical build-up of system
capabilities, with higher priority capabilities being planned for earlier completion

• Roadmap aligns major work items (e.g., Epics) to customer milestones
• Roadmap is shared with the customer to obtain concurrence on high level

program plan
• Roadmap includes key product dependencies which will form the basis for critical

path
• Roadmap supports establishment of the PMB and IMS (roadmap creation should

occur before IMS creation)
Roadmap is initially developed at program start

• The level of detail is coarser farther out in the future (near term Releases may
show Features)

• Updates will occur every few months, nominally coincident with cadence based
Release Planning

Key points in the figure
• Epics can span Agile cadence releases
• Key Epic-Epic dependencies are shown
• Dependencies necessary to support customer deliveries are shown
• Customer deliveries need not align with completion of Agile releases, as shown in

Delivery 1

39

On a regular cadence (nominally 2-4 months) Agile programs will conduct release planning
• Revise the overall roadmap based on new knowledge (e.g., changing priorities) and actual status of completed

work
• Refine the plan for the near term period (i.e., the next cadence based Release)
• Decompose work into Features that can be completed within the next Release

• This provides an iterative and adaptive approach to planning that
• Acknowledges uncertainty
• Expects change
• Keeps the focus on the outcomes, not the plan
• Always uses the latest “truth” data to plan future work
• Leverages rolling wave planning rhythms
• Is entirely compatible with best practices for performance measurement

Although Agile is designed to accommodate change, caution must be exercised to manage that change, especially
if it involves a change in scope. Scope changes cannot occur without a formal baseline change and should be
done in a highly controlled manner. Even in-scope changes must be carefully managed to avoid excessive churn.
Establishing well-defined ground rules with the customer up-front can help avoid problems in execution.

Key points in the figure
• The area in the green box shows what happens at release planning
• Features to be developed in the current release are defined/refined and planned for the current

release
• Feature numbering in figure shows trace to Epics, e.g., Features 4.1 and 4.2 are part of Epic 4.
• Even within a planned release the features should be prioritized so the team understands which

are most (and least) important should issues in execution occur.
• Feature level dependencies (not shown in the figure) are modeled; for Features that have no

dependencies it is often convenient to have the Feature span the entire period of the release to
enable maximum flexibility during execution to adjust the order of story and feature completion.

• Features are decomposed into Stories (not shown in the figure) to support planning and to
support EVM measures during release execution. Using story completion is the preferred
method for determining percent complete for a Feature.

40

Rolling Wave Planning aligns with Agile Release Planning cadence (some programs consider
release planning and rolling wave planning as coincident events)

• Decomposes Planning Packages into Work Packages
• Plans IMS for the next Release and may update future releases at a coarser (e.g.

Epic) level
• Update PMB as needed based on plan changes

Alignment must be maintained between the backlog, IMS, and PMB as release
planning, roadmap updates, and rolling waves occur by

• Maintaining mapping of Feature to Work Packages and Planning
Packages

• Updating IMS with new work packages for the rolling wave
• Approving Baseline changes and signing Work Authorizations
• Decomposing Features to support percent complete calculations
Maintaining alignment between the PMB (including the IMS) and Agile
products is critical!

Reminder: The relationship of Feature to work package (and IMS tasks) does not have to be
(and frequently won’t be) 1-1. For practical reasons a program may choose to model all or
many features within an Epic (Control account) within the release to a single IMS task (work
package).

Note: Freeze period considerations are covered on a future slide

41

It is often appropriate, both at roadmap creation and release planning to decompose some Epics into
Sub-Epics and Features in future releases to

• Understand scope
• Understand desired work sequencing for product build-up
• Understand critical path & dependencies to meet customer deliveries

Key points
• Only decompose where appropriate and to the depth needed (e.g., to

model critical dependencies); avoid decomposing just because you can,
especially farther out when there are more unknowns and increased
detail only creates an illusion of increased accuracy.

• Other factors that will impact ordering besides dependencies are priority
(customer value) and risk reduction (gaining early knowledge)

• Not all Epics will be decomposed to the same degree
• Level of decomposition may vary, even within a release time box
• Features planned for future releases may require further refinement or

decomposition before implementation
• You might think that larger program should have a more detailed

roadmap and IMS. Often the opposite is true. Excessive decomposition
on a large program can actually create excess clutter and noise, making it
harder to see the forest for the trees

Key points in the figure
• The physically bigger Feature boxes in Releases 2 & 3 imply larger “chunks” (Sub-epics) that will

be further decomposed later (e.g., at release planning events)
• The roadmap (and IMS) will have a mix of Epics, Sub-Epics (i.e., oversized Features) and Features

42

Roadmap Maintenance
• Always reflect current truth- not a ‘what I wish’ – better to identify and acknowledge that a problem exists

early than to allow wishful thinking to permeate the plan. No one likes bad news, but early identification
provides more time to adjust and determine the best options

• This (current truth and the impact to overall schedule) can be a sensitive topic with both company
management and customers

• As discussed on the prior slide, avoid over (or under) decomposition beyond the next release

Mapping / movement of scope
• This is not optional! Whatever specific practices and rhythms are employed it must support maintaining the

integrity of the baseline and mapped between the Agile products and the PMB.

IMS Maintenance

Per DoD EVMSIG with respect to the freeze period, the following should occur:
1) The freeze period may be adjusted, through formal changes to a company’s system description or other supplementary

guidance, to be short enough that it accommodates the Agile planning cycle, or
2) Customer direction to allow +changes in the freeze period may be obtained given support and participation of the

Customer in release planning activities.

Optional discussion topic or if questions come up on this: Ideally release planning occurs prior to rolling wave planning.
However, when “just in time” release planning cannot occur (e.g. because of internal company freeze periods or turn-around
time for completing rolling wave updates) several options have been observed.

• Release planning is performed a few weeks earlier than desired, with the acknowledgement that variances will
occur during execution as a result.

• Some degree of pre-release planning feature definition and sizing are done by the technical leads. This pre-
planning is done to support rolling wave with the acknowledgement that variances will be identified at actual
release planning and thus have to be managed during the release. In essence, an early “best guess” is done.

• Similar to the above, but the pre-planning (and IMS) are performed at a higher level of aggregation than
Features. Using the example above, this early planning may include only 4 items, once each for Epics 1-4, with
final decomposition of these still occurring at release planning. The IMS will only show one task for each epic,
with the lower level Feature trace occurring below the IMS (e.g., in an Agile management tool).

Final point (not just for this slide, but more broadly): We have to acknowledge that specific company and program
circumstances can make exact following of this NDIA or other guidance difficult. When that occurs focus on the core principles
of EVM and Agile and find ways to adjust the details and practices in a way that will maintain the integrity of those core
principles.

43

44

45

46

47

48

49

50

51

52

