

Schedule Risk Analysis

Building Models and Validating Estimates with Historical Data

Andrew Uhlig Raytheon Missile Systems January 27, 2015

Schedule Risk Analysis

- Statistical analysis performed on a regular basis enhances the use of the IMS as a management tool
- Fitting distributions to historical data more accurately models project performance and contributes to program management efficiencies
- Focusing on baseline duration variance is measurable and demonstrates continuous improvement

Question for the Audience

 Do common distribution curves accurately model your data?

 Some examples of common curves used when conducting Schedule Risk Assessments

Sample of Tasks with 20 Day Baseline Durations

Distribution Fitting Function

Distribution Fitting Function Cont.

Fit Ranking – Top Three Distributions

Engineering and Manufacturing Development

 Common distribution curves do not model data well in our development environment

Custom Distribution Curves

- Build a custom distribution curve to more accurately model the data
 - Assumes there is some historical data available based on actual performance
- Some tasks will take less time than planned and some will take more
- We also know that a large number of tasks will finish as planned (where the actual duration = baseline duration)

Think about these as three separate measurable events

Breaking out the Distribution

- For example, consider the first event all by itself. Run a distribution fit on data points where you perform better than planned
 - This will be "Event x"

Breaking out the Distribution Cont.

- Now consider the second event all by itself and fit a distribution on the data points where performance took longer than planned
 - Consider this "Event y"

Discrete Distribution

- A discrete distribution can build a more accurate curve
 - Specifies a number of outcomes n. In this case there are three
 - Each outcome (event) has a value (it's own distribution) and a weight which specifies the outcome's probability of occurrence
- Event x fitted distribution
 - Actual duration < baseline duration
 - Has a 36% Probability of occurrence
- Event y fitted distribution
 - Actual duration > baseline duration
 - Has a 35% Probability of occurrence
- Event z will have no variation
 - Actual duration = baseline duration
 - Has a 29% Probability of occurrence

Simulation technique used to combine separate events into one overall distribution

Simulation Result

Custom Distribution Curve Created

Which Curve Most Accurately Models the Data?

Two Approaches to Collecting Data

The "Art" aspect

- Tribal knowledge (Very specific to the project being analyzed)
- Human input based on an Engineer's judgment
- Collaboration among the team executing the project

The "Mathematical" approach

- Actual historical performance data used to build the model
- Built in data validation and justification
- No emotion or individual bias involved

Three Point Duration Estimates

- Historical performance data can be used to validate minimum and maximum duration estimates provided by **Engineers**
- There are also cases where historical data can be used to generate three point estimates without human input and provide more accurate simulation results

Models Based on Historical Performance

- There are almost endless possibilities when it comes to analyzing data and developing statistical models
- At a higher level, let's discuss a model that works well in my environment (multi-year development programs)
- Basic requirements to apply this type of model
 - Need at least three months of historical performance data (Could be less in a weekly status environment)
 - Need enough data points (completed tasks) to run a distribution fitting function with statistical software
 - Need a process to identify and remove outliers from historical data
 - Simulation results are more accurate when performing the analysis anywhere from eighteen to three months before the milestone event is scheduled to complete

Baseline Duration Variance

- First you have to determine how well the project has actually performed to date
 - In order to determine this you need to compare the actual duration of a completed task to the task's original planned baseline duration
 - This can be done by calculating the percentage of baseline duration variance
 - (Act Dur BL Dur) / BL Dur
- This analysis is independent of whether or not we finished a task on time (e.g. a task meeting the baseline finish date)

Baseline Duration Grouping

- Next you need to determine how well the program is performing in a specific range of planned durations
 - For example, there could be a lot more variance in tasks with lower baseline durations
- You can group the data by 10 day increments and calculate the baseline duration variance for each completed task within that range
 - For example, how well you performed on tasks with planned durations between 1 and 10 days, 11 and 20 days, 21 and 30 days, etc.
- Build custom distribution curves specific to each grouping

Custom Distributions Applied by Group

- Filter the IMS for all of the remaining effort leading up to the milestone event being measured
 - Apply the appropriate distribution to the remaining duration of each task (based on the original baseline duration grouping)
 - Don't apply distributions where it obviously does not make sense
- Run the initial simulation with your statistical software
- Afterwards, every task with a distribution curve applied should have its own unique distribution based on the simulation results
 - You can then determine what values to use for three point estimates
 - For example, P=.05 of the distribution can be used for the minimum value and P=.95 can be used to determine the maximum value

Simulated Three Point Estimates

- Now let's take a timeout for a minute!
- My original intention was to run an initial simulation on the file without any input from the program and therefore placing no additional burden on the team
- Then I would simply use the "auto-generated" three point estimates to compare against the Engineer's estimates
 - Gives the Planner additional information to facilitate discussions and question inputs
 - Data could also be used as additional backup justification

And, oh by the way, this is undeniably how you have actually performed against your plan to date!

Validating the Model

Then something very interesting happened!

- I decided to back test this model against some SRAs conducted in the past using Engineer's three point estimates
- This testing requires a project where a major milestone event has completed
 - All you need to know is the actual finish date
- Then you need an archived copy of the original IMS (from a point back in time) where an SRA was ran to that milestone before it was completed

Comparison Results

- Using the archive copy of the file, follow the steps previously outlined (same assumptions apply)
 - Pull the historical data out of the archive IMS
 - Build custom distribution curves for each baseline duration group
 - Apply the appropriate distribution to the remaining duration of each task
 - Run a simulation on the archive file to determine the expected milestone date
- Now that you have a date based on this model you can compare it to the date produced by the original SRA
 - Just be sure to compare dates that have the same level of confidence in both assessments
- Simulation results using the auto-generated three point estimates were more accurate, and produced expected dates closer to the dates that the milestones had actually occurred

Combine the Best of Both Techniques

- Processes for obtaining three-point estimates directly from Engineer's can vary widely, lack definition, and sometimes even reasoning
 - However, I would never discount the Engineer's true judgment
- Take advantage of the Engineer's knowledge and experience (the Art) combined with historical performance (the Math)
- Run a "pre-simulation" to provide auto-generated three point estimates to the Engineers as a starting point
 - They can address high risk activities or tasks on the critical path providing justification where necessary
 - They can also identify tasks that should be excluded from the simulation
 - Provides them with an opportunity to update minimum and maximum durations where it makes more sense before running another simulation

Wide Range of Application

- There are so many possibilities to create models when it comes to grouping data
 - You can model human behavior by focusing on an individual Engineer's historical planning performance
 - Model specific efforts or types of work (e.g. qualification testing)
 - Modeling performing organizations or Integrated Product Teams
 - Modeling the build of similar products
- Always be cautious
 - Are you really comparing like sets of data?
 - Can you identify any correlation or the lack thereof?
 - Will the analysis help the program team make real decisions?

If you go overboard you can really get lost in the data

Conclusion

- Statistical analysis can be applied on a regular basis and does not have to break the bank
- The application of actual performance trends leads to program management efficiencies
 - Models easily adjusted at major planning intervals (e.g. rolling wave)
 - Continuously improve duration estimates and planning with passage of time
 - Helps to optimize the Integrated Master Schedule as a predictive tool

