
Digging Out the Root Causes of Nunn-McCurdy Breaches

Irv Blickstein
Bill Shelton
September 2014

Congress Has Increased Focus on Cost Overruns

1982 Nunn-McCurdy Legislation Focused on Two Types of Cost

Program Acquisition
Unit Cost (PAUC)

Total # of Units Procured

Average Procurement

Unit Cost (APUC)

Procurement Funding

Total # of Units Procured

2009 WSARA Defined Two Types of Nunn-McCurdy Breaches

Congressional notification by the military department is required if any of these thresholds are exceeded

Significant

Unit Cost	Current Budget	Original Budget
PAUC	15%	30%
APUC	15%	30%

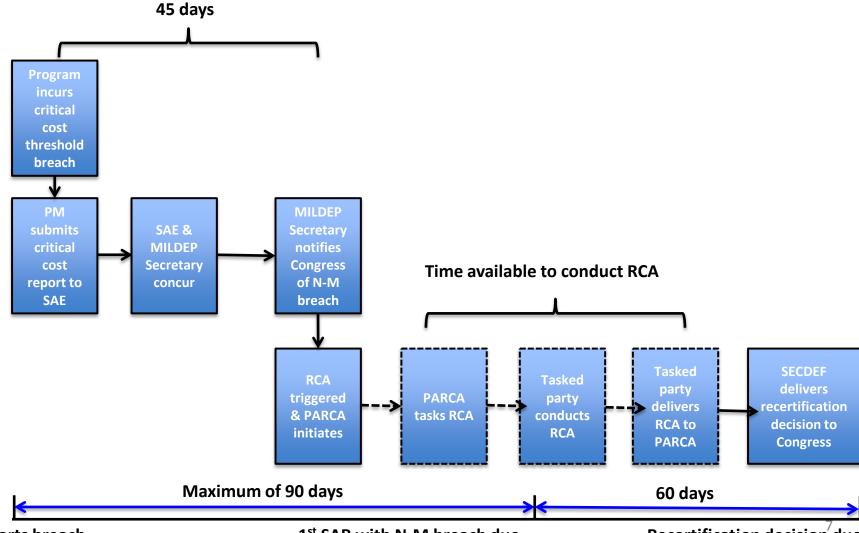
Critical*

Unit Cost	Current Budget	Original Budget
PAUC	25%	50%
APUC	25%	50%

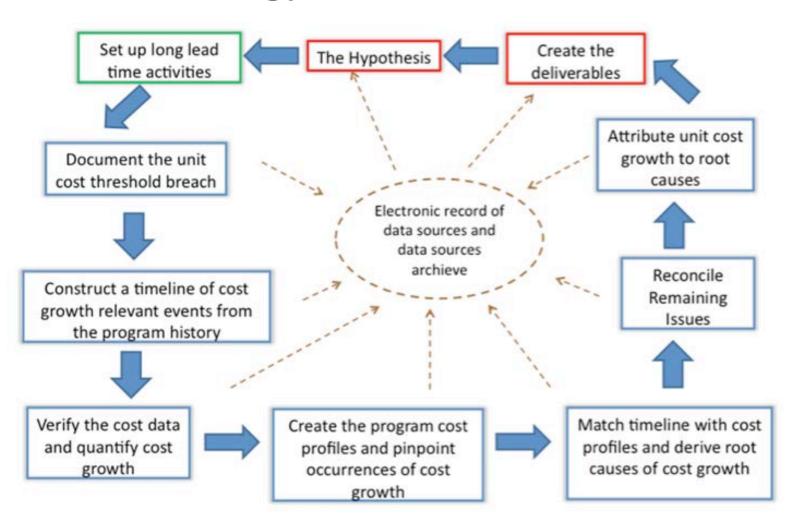
- * Assumes termination unless Secretary of Defense certifies:
 - Program is essential, necessary for national security, and no lesser cost alternative exists
 - New total program cost estimates are reasonable
 - Management structure is adequate to control costs

2009 WSARA Also Established PARCA in OSD

- Set up to do Performance Assessments Root Cause Analyses of major acquisition programs
- Small office and tight reporting deadlines (45-60 days for RCAs) meant PARCA needed help—primarily FFRDCs
- To date RAND has analyzed 9 programs and studied several management topics for PARCA


Outline

RCA methodology


Wideband Global Satellite Example

Common trends in RCAs

Time Available for RCAs Is Short

RAND Has Developed an RCA Methodology That Meets Timelines

Understanding Framing Assumptions Helps RCAs

- A Framing Assumption (FA) is any supposition central to shaping cost, schedule, or performance expectations
- FAs have these characteristics:
 - Critical: Significantly affects program expectations
 - No work-arounds: Consequences are not easily mitigated
 - Fundamental: Not derivative of other assumptions
 - Program Specific: Not generically applicable to all programs

Source: Husband, OSD/AT&L/PARCA, Sep 13

Outline

RCA methodology

Wideband Global Satellite Example

Common trends in RCAs

Wideband Global Satellite Meets Military Need for Military SATCOM

- Consists of three "blocks"
 - Block I is 3 satellites (now in orbit)
 - Block II is also 3, but one is for Australia
 - Block IIf is 2 satellites
- Total buy is planned for 12 satellites
- A procurement gap occurred between blocks I and II and between II and IIf

WGS Costs Increased Substantially and Incurred N-M Breach

- Block II was about 50 % more expensive than Block I
- Block IIf was about 50 % more expensive than Block II breach occurred here

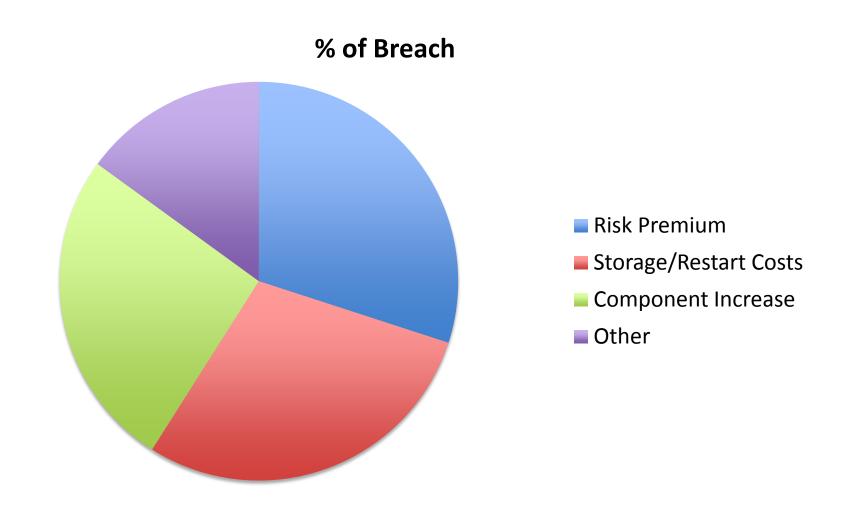
Source: Secretary of the Air Force briefing charts

	Original Budget	Current Budget	Current Estimate (Dec 09 SAR)	% Change Current Budget	% Change Original Estimate
PAUC	\$326M	\$358M	\$424M	18	<30
APUC	\$268M	\$294M	\$374M	27	40

Significant

breach

Source: WGS SAR, December 2009


Critical breach

Significant breach

Why Did the Program Breach?

	Component of Increase				Block IIf Cost		
1	Boeing price (BY 2007\$)		First level WGS		\$355M (Block II cost)		
2	3% Cost overrun		overrun		\$11M		
3	Actual unit costs (BY 200	07\$)	Historic		\$366M		
4	Four years' inflation at 3	3.5% per year	experience	9	\$54M		
5	Expected unit cost ~ 202	11	(component		\$420M		
6	Extra tests		<u>manufacturi</u>	ng)	\$2M]	Component	s a
7	7 Higher component prices for 3 items				\$35M	risk in the	
8	Higher component price	ent prices overall			\$25M supply c		in —
9	Subtotal	Difference between Block II target cost and			\$482M		
10	15% risk premium				\$555M		
		Block IIf ce	iling cost				

Risk Premium Was Largest Contributor to the Breach

Key Conclusions from WGS Breach

- Storage and re-start costs go up when the commercial market no longer supplies components
- Acquisition costs of components also go up when not available in the commercial market
- Root causes of the breach are changes in the commercial market without corresponding changes in the WGS design and procurement, and obsolescence

FA: Commercial market would support military technology needs and economies of scale

Outline

RCA methodology

Wideband Global Satellite Example

Common trends in RCAs

Based on Past Research We Divided Root Causes into Three Categories

This category	Includes these issues
Planning	Baseline cost estimates, ambitious schedules, poor contract incentives, contract delays, not enough RDT&E, poor manufacturing processes, unrealistic performance expectations
Changes in Economy	Increases in component and labor costs, decreased private sector demand (component or technology), quantity changes (+/-), inflation, production delays
Program management	Unforeseen design, manufacturing, technology integration issues, poor government oversight or contractor performance, inadequate or unstable funding, accounting artifacts

Root Causes Spread Across the Six Programs Evaluated

Category	Root Causes	Significant Root Causes
Planning	21	3
Change in Economy	18	5
Program Management	11	2
	50	10

Root and Significant causes by program:

- 1. Wideband global satellite 11
- 2. Apache 9
- 3. DDG-1000 14
- 4. Joint Strike Fighter 13
- 5. Excalibur 5
- 6. Navy ERP 8

Significant Root Causes:

- Poor contractor incentives (1)
- Immature technologies (2)
- Increase in component costs (1)
- Production delays (2)
- Quantity changes (2)
- Unanticipated design, manufacturing, integration (2)

Key Takeaways

- Programs reveal some common characteristics, BUT also important differences—policymakers need to understand causes do not stem from common source
- Quantity changes happen a lot, but they are rarely the root cause of a breach; typically reflects some other cause
 - All six programs analyzed had quantity changes
 - Typically, quantity change was a symptom, not a cause

• DoD should:

- Understand early testing regimes and number of test articles required
- Stipulate cost methodologies that rely on commercial production
- When a program depends on product improvements, ensure clear understand of time in inventory, ongoing R&D, and periodic program upgrades

Questions?

Root Cause Analysis

Published Reports

- Root Cause Analyses Completed & Published
 - RAND 1171.1 –OSD Report
 - AB3; Longbow Apache
 - DDG-1000; Zumwalt-Class Destroyer
 - Joint Strike Fighter (with Univ. Tenn. & IDA)
 - Wideband Global Satellite
 - RAND 1171.2 –OSD Report
 - Navy ERP (Root Cause-like)
 - Excalibur
 - Analyzing program Risk and Complexity
 - Root Cause Analysis Procedures Technical Report TR1248-OSD

Root Cause Analysis cont'd

Published Reports

- RAND 1171.3 OSD Report (FOUO)
 - JTRS GMR
 - P8 (Root Cause-like)
 - Global Hawk MOD (Root Cause-like)
- RAND 1171./4 OSD-Management Perspectives Pertaining to Root Cause Analyses of Nunn-McCurdy Breaches
 - PM Tenure
 - Oversight of ACAT II Programs
 - Framing Assumptions
- EELV- PR-659 OSD; FOUO and Propin

Root Cause Analyses Cont'd

Underway or Recently Published

- RAND 1171.5-OSD Report; Comparing Army and Commercial Advanced Waveform Developments and Analyzing Acquisition Programs with Multiple Nunn-McCurdy Breaches;
- RAND 1171.6-OSD Report; Management Perspectives
 Pertaining to Root Cause Analysis of Nunn-McCurdy
 Breaches, Volume 6: Contractor Motivations and
 Anticipating Breaches; in publication
- Identifying Acquisition Framing Assumptions through Structured Deliberation; in publication
- Acquisition of Space Systems, Volume 7: Past Problems and Future Challenges

Root Cause Analyses Underway cont'd

Underway or in Review

- Portfolio Analyses; Jennifer Kavanagh et al
- PR-796-OSD; Workforce Productivity; Enabling the Defense Acquisition Workforce to Meet the National Security Needs of the Future Workforce (McInnis et al)
- EVM: (Yardley et al)
- Knowledge Management System (McKernan)
- New Nunn-McCurdy breach analyses as directed
 - JPALS

Common Root Causes

				DDG			
Category	Root Cause of Nunn-McCurdy Breach	wgs	Apache	1000	JSF	Excalibur	Navy ERP
Planning	Underestimate of baseline cost	✓	· /	✓	1		/
	Ambitious scheduling estimates			✓	1		✓
	Poorly constructed contractual incentives	//			~		~
	Immature technologies		11	✓	11		
	III-conceived manufacturing process			✓			
	Unrealistic performance expectations			✓		✓	✓
	Delay in awarding contract			✓			✓
	Insufficient RDT&E	✓	✓	✓	1		
Changes in	Increase in component costs	✓✓	✓	✓	✓	✓	
economy	Increase in labor costs		✓		✓	✓	
	Discontinued/decreased production of components	✓					
	Decreased demand for similar						
	technology in private sector	✓					
	(economies of scale)						
	Inflation	✓	✓	✓	✓		
	Production delays	✓✓		✓	11		
	Change in procurement quantities						
	Increase	✓	11				✓
	Decrease			11	✓	✓	
Program management	Unanticipated design, manufacturing, and technology integration issues		11	*	11		~
	Lack of government oversight or				✓		
	poor performance by contractor						
	personnel			✓			
	Inadequate or unstable program funding	✓	*	*	√	✓	~
	Accounting artifact	√					

Note: ✓—Root cause, ✓ ✓—Significant root cause