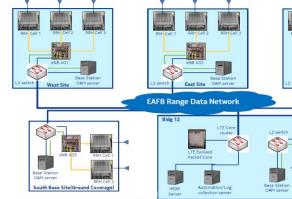
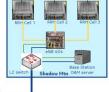
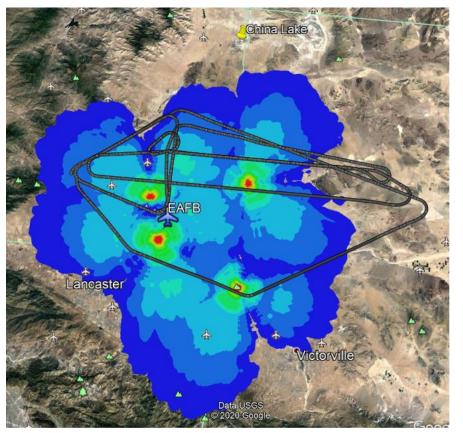

NOKIA We create the technology to connect the world

NDIA U.S. – Finland Defense and Security Industry Seminar Panel on New Technologies February 26, 2020


Bob Picha Chief Engineer – NSC Projects Bob.picha@Nokia.com


CRTM Project Highlights

	Traditional AMT	Cellular-based AMT
Concept of operations	 Single frequency assignment per test article occupied over entire range Simplex data transmission 	 Each frequency assignment is re-used in every cell and for multiple test articles Duplex data transmission
Spectral efficiency	Up to 10Mbps with enhancements	 Average 20Mbps over range with peak capability to 40Mbps Path to higher throughput capability with 5G systems
Operational efficiency	Manual spectrum assignment with advanced scheduling	Autonomous spectrum assignment



NOKIA

EAFB Flight Testing

- **12.5 hours** in flight patterns
- **19** flight test "loops
- Altitude: 7.5K Ft to 26.5K Ft MSL
- Speed: 230-280 knots
- Test condition variants:
 - Offered Air to Ground Throughputs: 20 and 30Mbps
 - > Offered Packet Size: **1392 and 400 Bytes**
 - Single and Multi AT Scenarios

NOKIA

CRTM Results

- Peak Throughput >30Mbps
- Average Throughput 17.8Mbps
- Handover Success Rate 94.4%
- Automatic Re-establishment
- Doppler Correction
- End to End One Way Latency <50msec
- Multi AT exercises spectrum sharing

Field and lab tests demonstrated efficacy of LTE-A technology for Aeronautical Mobile Telemetry

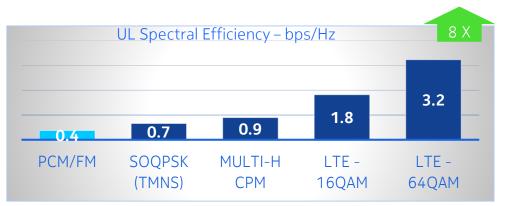
- Spectrally efficient commercial products in non congested spectrum
- Technology capable of supporting speeds of MACH2 with doppler corrections
- Seamless mobility and low latency
- Simultaneous operation of multiple test articles
- Simplified operations: always on, no frequency planning, no pre configuration, unrestricted flight patterns

5G Ready Flightline Radio Network

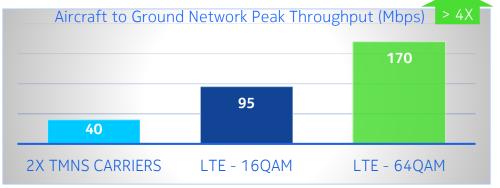
Key Capabilities

- Greatly increases spectrum capacity
- Multiple users on one shared frequency
- Always On therefore available "on demand"

Technology Benefits


- COTS 5G m-MIMO mmWave and cmWave radio and core network
- > 4G/5G Non-Standalone Core Architecture
- Asymmetric Uplink and Downlink bandwidth
- Spectrum sharing and enhanced security using network slicing
- Seamless handover between FRN and SST for immediate benefit offload ground SST AMT

Cost Advantage


- Reduce development and sustainment costs by leveraging COTS equipment
- Operational efficiency

Benefits of LTE for Flightline applications

Comparison based on equivalent occupied bandwidth (-25dBm/30kHz points)

LTE offers quantum steps forward in capacity over existing telemetry link technology

- SOQPSK and Multi-h CPM doubles the spectral efficiency of PCM/FM
 - LTE with OFDM and higher order modulation offers an additional 2x – 4x improvement
 - Improved spectral efficiency translates into greater data throughput capability

NOKIA

Comparison based on 52MHz occupied bandwidth (-25dBm/30kHz points)

Early FRN Demonstration

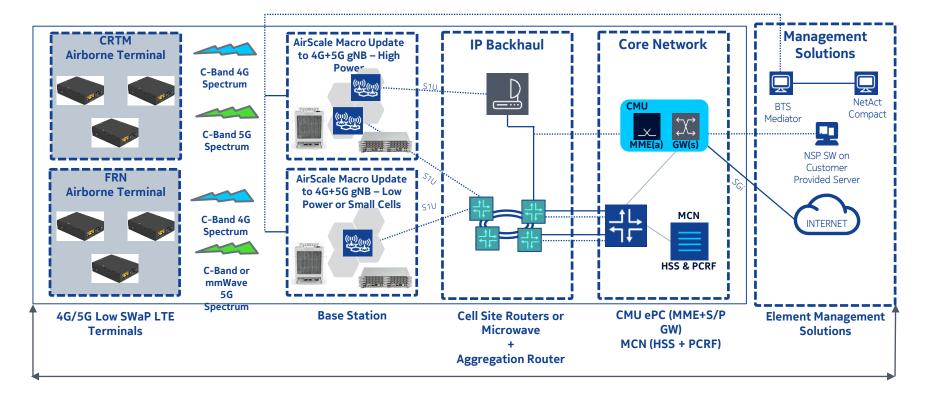
Discussion during the Flightline Radio Network project kick-off started some brainstorming on how to accomplish an early demonstration of FRN capability.

Working in conjunction with the TRMC team, a plan to deliver "live" telemetry data from an aircraft to a simulated control room over LTE was hatched ...

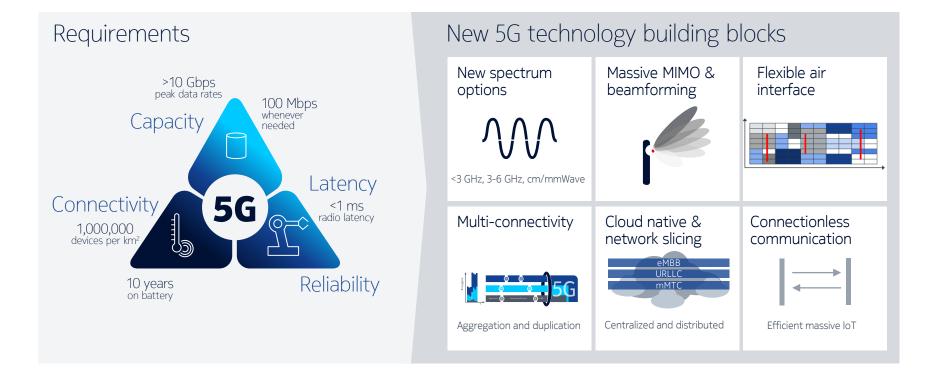
Early Flightline Demo is not part of either CRTM or FRN project (Nokia providing at no extra cost). Nokia wants to demonstrate how powerful LTE technology is for TRMC applications

Demonstration accomplishments:

- 1. Playback of recorded SST data and live video stream including end-to-end encryption totaling 31Mbps over an IP radio link
- 2. Simultaneous data transmission from sources representing two aircraft (31Mbps and 10Mbps) over a single LTE channel with no loss of data
- 3. Bi-directional data transfer: 100Mbps downlink and 41Mbps uplink
- 4. QoS protection of 10Mbps GBR data stream in an overloaded LTE channel
- 5. Sufficient range for flightline overage

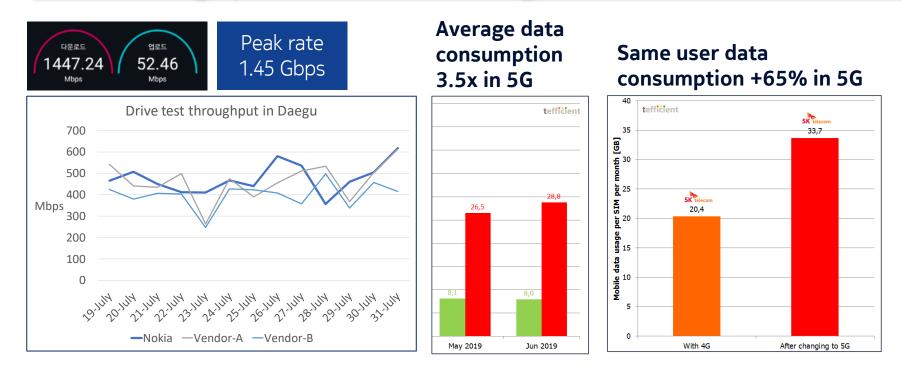


 Ctop
 Ctop


 Ctop

Vision for 5G Ready EAFB Test Range

5G powered by a set of new technologies



5G is a giant leap in performance

	Today	2020-25		
Users	10M people	+100M 'things'		
Speed	100 Mbps	100x faster	Smart home	Mobile gaming
Latency	>>10 ms	10x less		
NW service level	Best effort for all	Committed SLAs	Industry 4.0	Connected cars
Logical networks	1	Many (slices)	Drones	loT wearables

5G Throughputs and Data Usage with 3.5 GHz in Korea

Average throughput 400 – 600 Mbps in drive testing (5G + LTE) Data usage increased from 20 GB to 34 GB after upgrading to 5G

NOKIA

More recent data from MWC matrial?

5G brings a huge variety of industry-related use cases

Each with different and demanding technical requirements ...

Discrete Automation Cloud Robotics Automated Seaports Factories & warehouses Motion Control Remote Control Monitoring & Sensors Operations Optimization Predictive Maintenance Fleets of Drones Cooperative Robots

<u>Mining</u> Agriculture eHealth Robotics

E2e application latency: down to 1ms Network latency: down to <1ms DL Tput: a few bytes to a few Mbps UL Tput: a few bytes to 10s Mbps

Loading and Hauling Mining Operations Remote Control Drilling Monitoring & Sensors Worker Health & Safety Automated Drilling Remote Operations Centre Vehicle Tracking **Environment Control** Factories & Warehouses Drones Process Control Monitoring & Surveillance Automated Exploration

NOKIA

What's next – the Art of Possible

LTE-Advanced and 5G Connectivity

Increase test capacity and capability

- Simultaneous testing with multiple test articles
- Seamless inter-range flight test capability

Terminal for fast movers

- Ruggedized platform supporting CRTM and FRN for ground and airborne applications
- Network telemetry using bi-directional LTE radio links with SST compatibility

IoT and M2M communications

 Asset Tracking and Smart Sensors for Security, smart lighting control

High Spectral Efficiency

 $\circ\,$ Higher throughput $\,$ with 5G (x20) $\,\circ\,$ 5G in unlicensed mmWave band

