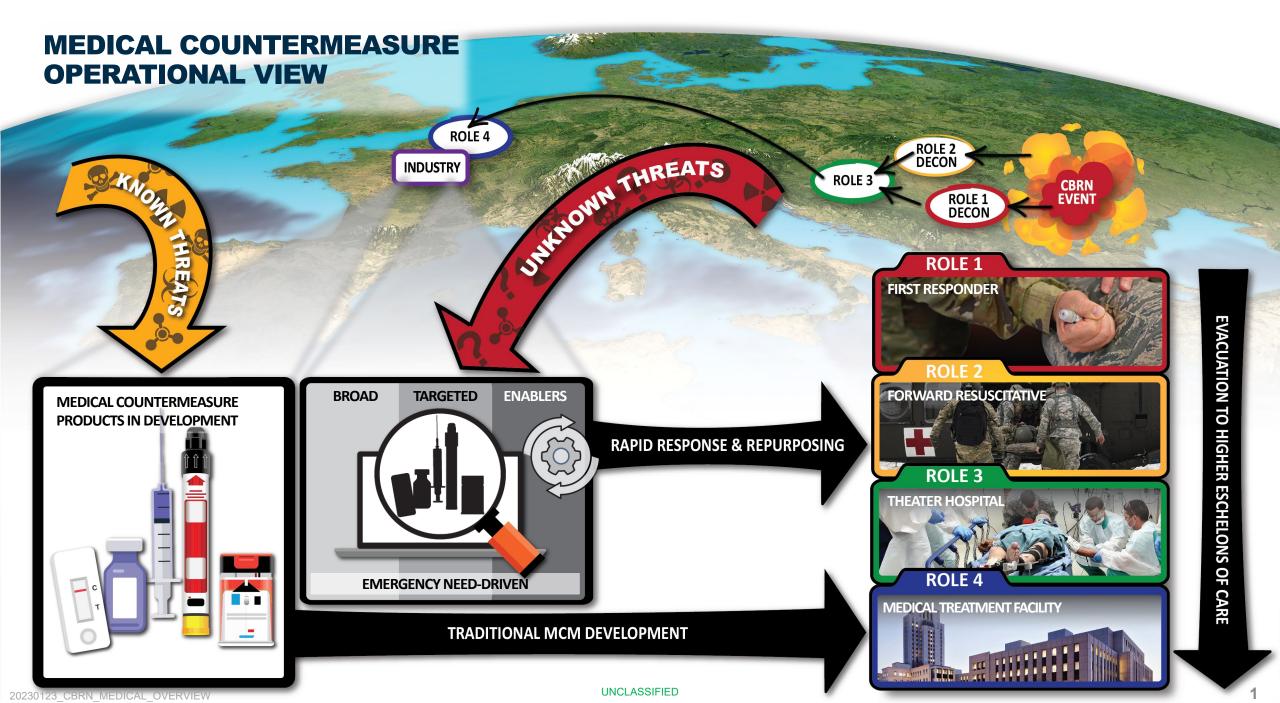


JPEO-CBRND 🚴 😣 🕸 🏘

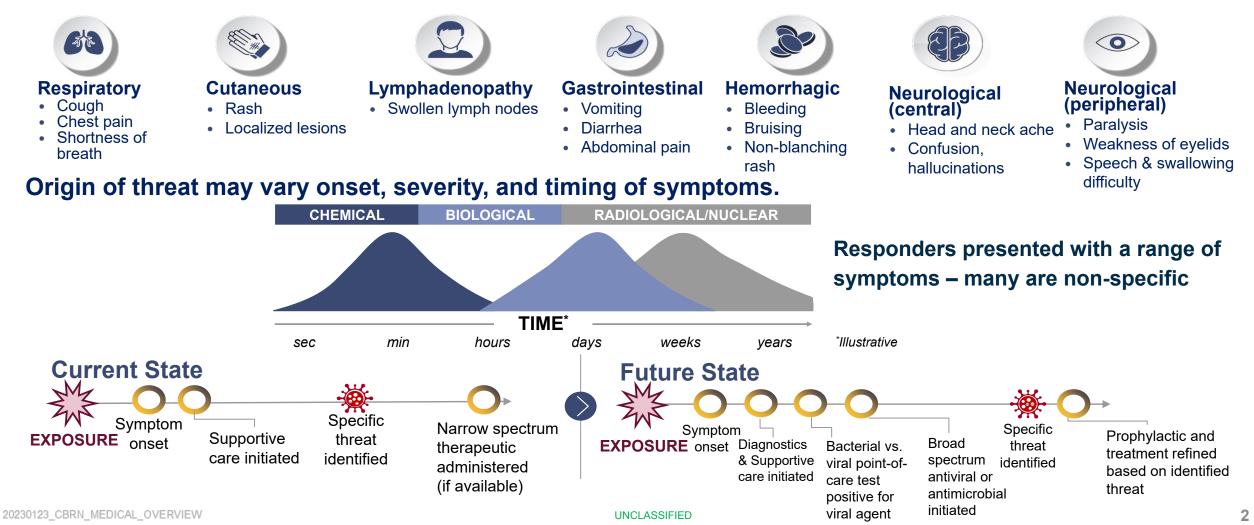

RAPID ACQUISITION AND INVESTIGATION OF DRUGS FOR REPURPOSING (RAIDR) AND VACCINE ACCELERATION THROUGH MODULAR PROGRESSION (VAMP)

April 2023

LTC Amanda Love Joint Product Manager BIO1

DISTRIBUTION STATEMENT A: Approved for public release; distribution unlimited (JPM CBRN Medical) (4 AUG 2022) or higher DOD authority. Controlled by: JPM CBRN Medical Category(ies): PRVCY Distribution/Dissemination Controls: FEDCON POC: COL Matt Clark, 301-619-7400

PROGRAMS EXECUTED ON BEHALF OF THE CHEMICAL AND BIOLOGICAL DEFENSE PROGRAM



CLINICAL PRACTICE GUIDELINE INFORMED DEVELOPMENT

To rapidly treat and contain threats, medical responders benefit from clinical guidelines, based on common symptoms presenting at different times. CPGs also inform concepts of use and operations and regulated product development.

Predictive prodrome: Flu-like symptoms, lethargy, fever, aches

PROGRAMS EXECUTED ON BEHALF OF THE CHEMICAL AND BIOLOGICAL DEFENSE PROGRAM

VACCINE ACCELERATION BY MODULAR PROGRESSION (VAMP) PROGRAM IS BUILDING "BIOLOGICAL BODY ARMOR" TO PROTECT THE WARFIGHTER FROM WITHIN

Delivering critical preparedness outcomes

DEFENSE

Strategic reserve of "bio-armor" (e.g., vaccines) licensed or authorized for emergency use

DETERRENCE

Capability to rapidly deploy vaccines deters adversaries considering exploiting vulnerabilities

SPEED

Industrial base for rapidly deploying partially developed, 'on the shelf' vaccine candidates

With increased operational agility

RESPONSIVENESS

Ability to adapt to shifting priorities and 'compete' multiple prototypes in parallel for a single threat

GEOGRAPHIC PRESENCE OF CURRENT DEVELOPMENT PRIORITIES DEMONSTRATES BREADTH OF THREAT LANDSCAPE

Flu: Globally endemic

Plague*:

Endemic: Peru, DRC, Madagascar Historical outbreak: South Africa, Mozambique, Tanzania, Uganda, China, Mongolia, Russia, India, Kyrgyzstan, U.S., Bolivia. Brazil

CCHF:

Endemic: Albania, Kosovo, Bulgaria, Turkey, Iraq, Iran, Afghanistan, Pakistan, India, Kazakhstan, Kyrgyzstan, China, South Africa, Sudan, Mauritania

Lassa:

Endemic: Nigeria, Sierra Leone, Guinea, Liberia Historical outbreak: Cote d'Ivoire, Ghana, Togo, Benin, parts of Mali and Burkina Faso

Filovirus**:

Historical outbreak: U.S., Italy, Spain, England, Germany, Netherlands, Serbia, Mali, Senegal, Sierra Leone, Guinea, Liberia, Cote d'Ivoire, Ghana, Nigeria, Gabon, Angola, DRC, Congo, Uganda, Sudan, Kenya, South Africa

Henipavirus:

•

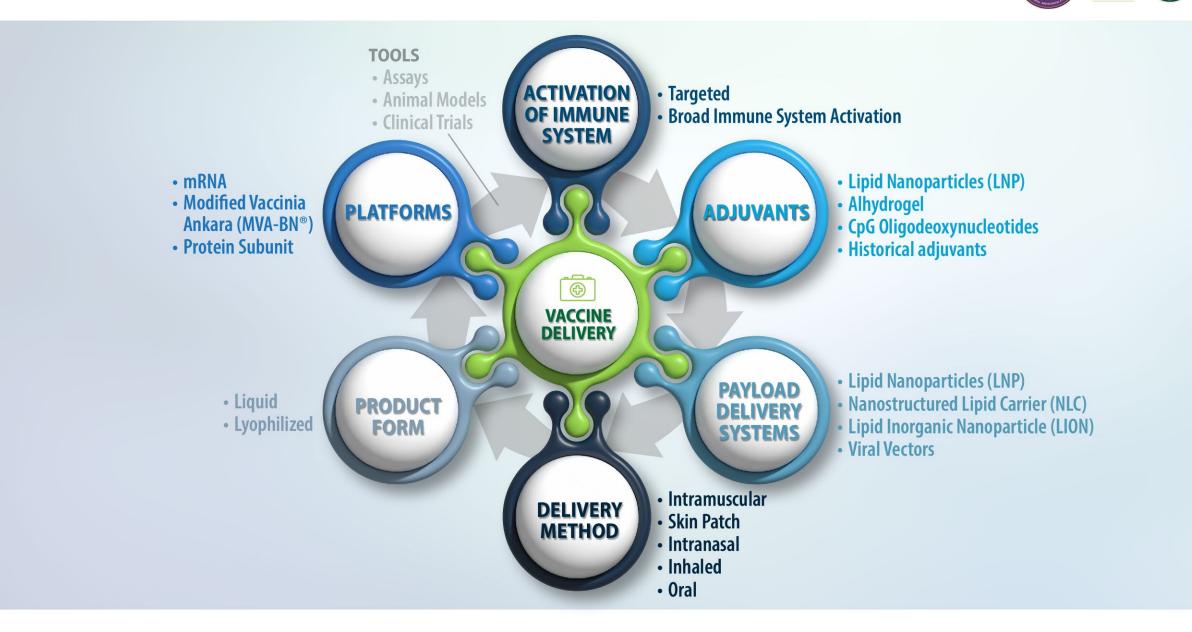
Source Links: CCHF (a) (b); Filovirus (c) (d) (e) (f); Plague (g) (h); Lassa (i) (j); Henipa (k) (l) (m)

Endemic: Malaysia, India, Singapore, Philippines, Australia, Bangladesh

Upcoming development priorities (not mapped)

- Equine encephalitic viruses (Western, Eastern, Venezuelan)
 Q Fever
- Antimicrobial resistant bacteria Botulinum

* Global distribution of natural plague foci (as of March 2016). Source: WHO/PED; ** Includes both Ebolavirus and Marburg


Sources: CDC, WHO

20221004 VAMP Strategy Briefing

UNCLASSIFIED

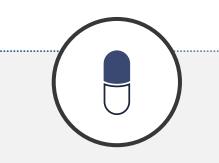
JPE CBRND

SYSTEM OF SYSTEMS: VACCINE DEVELOPMENT & DELIVERY

VAMP EFFORTS

System		Sub- system	Carriers & Adjuvants	Delivery Method	Partners	Threat Families	Threats	Readiness
Traditional (Vaccines) Systems	RNA systems	mRNA	• Lipid Nanoparticles (LNP)	 Intramuscular Alternative deliveries (options) 	utmb Health moderna	ArenavirusesFiloviruses	 Lassa Aerosol Filoviruses (Ebola, Marburg, Sudan) 	 Initial manufacturing Pre-clinical animal work
			Lipid Nanoparticles (LNP)	IntramuscularSkin patch	AstraZeneca	• Influenza	Pandemic Avian Flu	 Initial manufacturing Pre-clinical animal work
		saRNA	Lipid Inorganic Nanoparticle (LION)	IntramuscularSkin patch (option)	utmb Health	HenipavirusesNairoviruses	NipahCCHF	 Initial manufacturing Pre-clinical animal work
			 Nanostructured Lipid Carrier (NLC) 	IntranasalIntramuscular	🜔 аані	• Influenza	 Pandemic Avian Flu 	Initial manufacturingPre-clinical animal work
	Vector systems	Modified Vaccinia Ankara (MVA-BN®)	• N/A	• Intramuscular	BAVARIAN NORDIC	• Togaviruses (Alphaviruses)	• WEVEE	 Pre-clinical animal work Non-GMP, GMP manufacturing
	Subunit protein(s) system(s)	E.coli	Alhydrogel	Intramuscular		• Plague	• Plague	GMP manufactured
Non-Traditional (Biological Response Modifier) Systems	Oligodeoxy- nucleotide	CpG 1018	 CpG 1018 Recombinant IFN (Type I) 	Intramuscular	— DYNAVAX —	• Plague	• Plague	 GMP manufactured Clinical trial on-going
	Lipid small molecules	TLR Agonists 4/7/8	• N/A	 Intranasal 		• Pan viral	• Pan-Flu, Nipah	Initial manufacturing
	Lipid small molecules	TLR Agonists 2/6	• N/A	• Intranasal		• Pan viral	 Flu, Rhinovirus, SARS-COV2, Nipah 	 Initial manufacturing
	Lipid small molecules	Interferon Lambda	• N/A	 Intranasal 	In negotiation	• Pan viral	 Flu, SARS-COV2, Marburg, Ebola, Nipah 	 Initial manufacturing

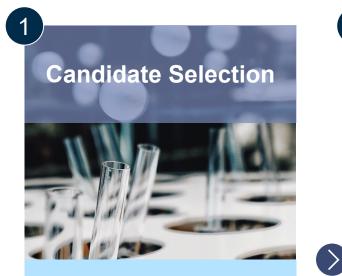
PROGRAMS EXECUTED ON BEHALF OF THE CHEMICAL AND BIOLOGICAL DEFENSE PROGRAM

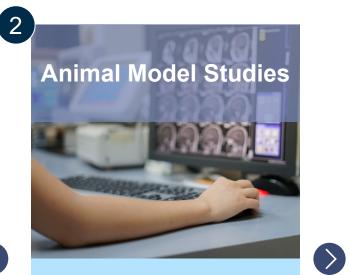

Conventional drug development is the primary means by which we build MCMs

RAIDR complements this approach with drug repurposing, testing approved MCM efficacy for additional indications

RAIDR repurposes proven medicines...

...to provide a first line of defense to the warfighter


- **Demonstrated safety** in similar indications, lowering risk of failure
- Established manufacturing processes
- Faster and cheaper path to deploy, building from prior development efforts


- Provides broad-spectrum MCMs to bridge between threat emergence and targeted therapy development
- Mitigates warfighter's symptoms, and expedites return to action

RAIDR AIMS TO FEED INTO CLINICAL PRACTICE GUIDES (CPGS) THAT SERVICES USE FOR RAPID MEDICAL CARE

- Identify FDA-approved drugs with high repurposing potential e.g.,
 - Favorable safety profile for new usage
 - Evidence for new target
 - Viable commercial partner/pathway to delivery

- Conduct animal studies to provide needed data package
- Demonstrate potent effect on desired target/mechanism through the efficacy studies

- Inform clinical practice guidelines used by responders for tactical approach to field treatment
- Incorporate data package into repurposing report and for EUA submission (if applicable)

... with potential to become Program of Record if clinical need is demonstrated / funding is available

CET RAIDR EFFORTS

Threat	Etymology: MCM Candidate	Symptomology/MOA	RAIDR Purpose/Study Scope	Readiness	Approved Human Dosage
Acute Respiratory Disorder	Sulfur Mustard: Leukine	Stimulates macrophages in the lungs; blunts myelosuppression	NHP Challenge Study with Standard of Care against sulfur mustard	Approved for Radiation Exposure; May behave as BRM in some viral infections	For injection (lyophilized powder): 250 mcg of sargramostim in singledose vial for reconstitution. Injection (solution): 500 mcg per mL sargramostim in multiple-dose vial.
	Yersinia Pestis (Pneumonic Plague): Omadacycline	Synthetic Antibacterial, mitigates risk of antibacterial resistance	NHP aerosolized challenge study with standard of care at serial time points to test as PEP and treatment to aerosolized plague	Approved for Community Acquired Bacterial Pneumonia; Acute Bacterial Skin and Skin Structure Infections. Currently under investigation against Anthrax by BARDA.	For Injection: 100 mg of omadacycline as a lyophilized powder in a single dose vial for reconstitution and further dilution before intravenous infusion Tablets: 150 mg omadacycline
Refractory Status Epilepticus & Paralytic Toxin Intoxication	Nerve Agent: Dexmedetomidine	Counters overexcitement of central nervous system in status epilepticus	NHP challenge study to determine efficacy and neuroprotective qualities against chem exposure	Sedative. Approved as anesthetic; used in emergencies to treat refractory status epilepticus, existing rodent studies	Achieve required concentration (4 mcg/mL) prior to administration.
	Nerve Agent: Isoflurane	Counters overexcitement of central nervous system in status epilepticus	Mouse and rat challenge study to determine efficacy and neuroprotective qualities against chem exposure	Sedative. Approved as anesthetic; used in emergencies to treat refractory status epilepticus	Isoflurane induction requires 1.5% to 3% isoflurane for 7-10 minutes; then 1.0-2.5% isoflurane for the remainder of the time
	Nerve Agent: Ketamine	Counters overexcitement of central nervous system in status epilepticus	Minipig and NHP challenge study to determine efficacy against chem exposure	Sedative. Approved as anesthetic; used in emergencies to treat refractory status epilepticus, clinical trial for SE on-going, neuroprotective qualities demonstrated in rats	Intramuscular Route: range from 6.5 to 13 mg/kg. Intravenous Route: range from 1 mg/kg to 4.5 mg/kg.
Hemorrhagic Fever	Nipah/Hendra: TBD	Broad spectrum antiviral	Using AI/ML to find repurposing candidates to use in in vitro and subsequent in vivo studies	Approved drugs, various indications	TBD
	Lassa: TBD	Broad spectrum antiviral	Same as Nipah/Hendra	Approved drugs, various indications	TBD
	Crimean Congo Hemorrhagic fever (CCHF): TBD	Broad spectrum antiviral	Same as Nipah/Hendra	Approved drugs, various indications	TBD

CONTACT

COL Matthew Clark

Joint Project Manager, JPM CBRN Medical

Jeff Zerhusen

Deputy Joint Project Manager, **JPM CBRN Medical**

301-619-7400 matthew.g.clark.18.mil@army.mil jeffrey.a.zerhusen.civ@army.mil

LTC Amanda Love

Joint Product Manager, JPM CBRN Medical

PE CBR

Andrew Glenn

Deputy Joint Product Manager, **JPM CBRN Medical**

301-619-7400 amanda.b.love.mil@army.mil andrew.m.glenn7civ@army.mil

Online jpeocbrnd.osd.mil

Public Affairs Office

usarmy.apg.dod-jpeo-cbrnd.mbx.jpeocbd-public-affairs-office@army.mil

Contracting

Keith Batchelor | 240-586-1523 Lee Hess | 240-344-0462

UNCLASSIFIED