Final Report Outline

• Background

• Potential MBE Benefits, Costs, Risks

• Objective MBE Framework

• Policy, Guidance and Contracting Mechanism
 Impediments and Issues

• Recommendations

• Conclusions and References
Background

Final Report
Model Based Engineering Subcommittee
Identify opportunities to leverage Model-based engineering practices to improve systems engineering productivity and completeness

- Do existing policies, guidance and contracting mechanisms hinder model-based collaboration?

Reinvigorate exploration and exploitation of Modeling and Simulation Systems Engineering enablers to assess and mitigate acquisition program risks

- Modeling & Simulation Committee to lead the initial investigation
- Coordinate work schedule with new Committee chair
Assess and promote Model Based Engineering (MBE) practices in support of the DOD capability acquisition life cycle*

- Define Model Based Engineering (MBE)
- Define how MBE is related to M&S
- Identify the potential costs, risks, and benefits of MBE
- Identify the potential limitations of MBE
- Identify how MBE practices can be used in capability acquisition with a primary focus on Systems Engineering to include concept engineering, concurrent design, development, and manufacturing
- Identify MBE approaches to assess and mitigate risks throughout the capability acquisition life cycle
- Identify the issues and challenges with using MBE practices across the capability acquisition life cycle
- Identify where/how existing policy, guidance and contracting mechanisms support/hinder Model Based collaboration across program/capability boundaries

Provide recommendations:

- For changes in policy, guidance, and contracting mechanisms that could further support Model Based collaboration
- For near-term opportunities to leverage MBE in capability acquisition
- For areas of MBE research & development that may have high potential pay-off

* - Acquisition Life Cycle: All phases of the capabilities life cycle including research, development, Test & Evaluation, production, deployment, operations and support, as well as evolution of deployed systems in response to changes in their environment over time.
MBE Subcommittee Membership

- Jeff Bergenthal (Lockheed Martin (LM); MBE subcommittee lead)
- Eileen Bjorkman (SAF/A6W; former AMSWG chair)
- Jim Coolahan (Johns Hopkins University/Applied Physics Laboratory (JHU/APL); SISO)
- Bill Espinosa (USN)
- Sandy Friedenthal (LM; INCOSE MBSE)
- Tony Pandiscio (Raytheon)
- Lou Pape (Boeing)
- Greg Pollari (Rockwell Collins; AVSI SAVI)
- Hans Polzer (LM; NCOIC)
- Jennifer Rainey (JHU/APL)
- David Redman (AVSI; AVSI SAVI)
- Mark Rupersburg (General Dynamics Land Systems)
- Frank Salvatore (High Performance Technology Inc)
- Don Schneider (Foxhole Technology)
- Dennis Shea (Center for Naval Analysis)
- Roddey Smith (Northrop Grumman)
- Charlie Stirk (CostVision; PDES, Inc.)
- Steve Swenson (Aegis Technologies; SISO)
- Bill Tucker (Boeing)
- Mike Truelove (Army CAA)
MBE Definition

- Model-Based Engineering (MBE): An approach to engineering that uses models as an integral part of the technical baseline that includes the requirements, analysis, design, implementation, and verification of a capability, system, and/or product throughout the acquisition life cycle.

- Model: A physical, mathematical, or otherwise logical representation of a system, entity, phenomenon, or process. (DoD 5000.59 -M 1998)

- Preferred MBE Practices:
 - Models are scoped to purpose/objectives
 - Models are appropriate to the context (e.g., application domain, life cycle phase)
 - The models represent the technical baseline that is delivered to customers, suppliers, and partners
 - Models are integrated or interoperable across domains and across the lifecycle

- Core to MBE is the integration of descriptive/design models with the computational models
Characteristics of Models Used in MBE

- Models apply to a wide range of domains (e.g., systems, software, electrical, mechanical, human behavioral, logistics, manufacturing, business, socio-economic, regulatory)

- Computer-interpretable computational model
 - Time varying (e.g., performance simulations, structural dynamic analysis)
 - Static (e.g., reliability prediction model)
 - Deterministic or stochastic (e.g., Monte Carlo)
 - May interact with hardware, software, human, and physical environment
 - Includes input/output data sets

- Human-interpretable descriptive models (e.g., architecture/design such as UML, SysML, UPDM, IDEF, electrical schematic, 3D CAD geometry, DODAF 2.0)
 - Symbolic representation with defined syntax and semantics
 - Repository based (i.e., the model is stored in structured computer format)

- Supporting metadata about the models including assumptions, versions, regions of validity, etc.

- MBE can also include the use of physical models (e.g., scale models for wind tunnels or wave tanks)
Potential MBE Benefits, Costs, Risks

Final Report
Model Based Engineering Subcommittee
High-Level MBE Benefits

• Reduce time to acquisition of first article for systems and solutions
 - More complete evaluation of the trade space
 - Earlier risk identification and mitigation
 - Concurrent and collaborative engineering
 - Design reuse
 - Accelerated development

• Reduce the time to implement planned and foreseen changes in systems
 - Design reuse
 - Rapidly evaluate changing threats and explore trade space

• Enhance Reliability
 - Earlier and continuous requirements and system verification
 - Identify and resolve errors / issues earlier → fewer post-fielding issues

• Enhance Interoperability
 - Inclusion of the operating environment and external interfaces in system models
 - Early and continuous interface and interoperability verification

... and Each of These Benefits Enhance Affordability
MBE Benefits Across the Acquisition Life Cycle

- More complete evaluation of trade space [8, Boeing 787]
- Improved communications across stakeholders [6, 8]
- Earlier evaluation of manufacturing feasibility [2]

- Rapidly evaluate changing threats and explore solution space [8]
- Design Reuse [6, 7]
- Lower costs with complex product families [5]

- Reduced manufacturing related costs and schedule [2]

- Improved requirements [3, 4, 6, 7]
- Earlier risk identification and mitigation [2, 4, 7]
- Early evaluation of manufacturing processes [2]
- More complete evaluation of trade space [8, Boeing 787]

- Earlier risk identification and mitigation [2, 4, 7]
- Concurrent and collaborative engineering [2, 3, 4, 7]
- Reduced defects and re-work costs [1, 3, 4, 7]
- Accelerated development schedule [1, 6, 7]
- Improved system and software reliability and quality [6, 7, 8]
- Design reuse [6, 7]
Virtual Integration to Manage Risk Throughout The Life Cycle

Sensitivity analysis for uncertainty

Confidence in implementation

Requirements Engineering

Operational Models

High-level System Models

Detailed Technical Models

Specify Model-Component I/Fs

Component Development

Component Design

Subsystem Design

System Design

Unit Test

Integration Test

System Test

Acceptance Test

→ generation of test cases
← updating models with actual data
Risk and Cost Reduction Through Earlier Verification

Performing requirements and design verification as early as possible, as opposed to waiting until “composition” activities begin, reduces cost and schedule risks.

Potential MBE Costs and Risks

• Initiating an MBE approach will require investment in tools, training, and infrastructure
 - MBE must be institutionalized to be cost effective
 - The initial investment may be prohibitive if only used on one project
• MBE approaches and tools will not replace strong, rigorous, and disciplined enterprise processes
 - They must be integrated with the processes
• Training is necessary, but not sufficient
• Must address stove-piped responsibilities
 - Model artifacts will cross organizational / discipline boundaries
 - Requires a strong interdisciplinary team to support concurrent engineering processes and practices
Objective MBE Framework

Final Report
Model Based Engineering Subcommittee
MBE Current State

- Poor integration of models across the life cycle
- Limited reuse of models between programs
- Variation in modeling maturity and integration across Engineering Disciplines (e.g., systems, software, mechanical, electrical, test, maintainability, safety, security)
 - Mechanical/Electrical CAD/CAE fairly mature
 - Systems/Software/Test fairly immature
- Many MBE related activities across Industry, Academia, and Standards Bodies
- Evolving modeling standards (e.g., CMSD, Modeling Languages such as SysML, UPDM, Modelica, AADL)
- Tools are evolving towards an MBE paradigm and progressing towards greater tool to tool interoperability
MBE Enhances Affordability, Shortens Delivery and Reduces Risk Across the Acquisition Life Cycle
Primary Gaps That Must Be Closed

• Policy
 - Policy/contracting mechanisms
 - Business model(s) that incentivize MBE adoption

• Processes/Methods
 - Currently, models (other than CAD) are not part of the Technical Baseline
 - Model/data/tools management (GOTS and COTS)
 - Information management
 - Model-based methods

• Tools/Technologies/Standards
 - Domain specific language and data standards
 - Formal semantics
 - Data rights protection in an open architecture environment
 - Model interconnect and interchange

• People
 - Workforce gaps across stakeholder communities
 - Acceptance of the use of models as a business practice
 - Model validation and confidence (reputation management; evidence based credibility)

• Infrastructure/Environment
 - Easy access to models/content developed by others
 - Lack of common, shared Operational Scenarios

• The Business Case for MBE
Policy, Guidance and Contracting
Mechanism Impediments and Issues

Final Report
Model Based Engineering Subcommittee
Preliminary Policy Findings

• Existing OSD and service policies are consistent with, and generally supportive of, the aims and approach to MBE.

• Use of models and digital products in MBE will require some new policies, regulations, and contracting practices:
 - To represent an authoritative technical baseline.
 - To describe requirements and provide the basis for assessing contractual compliance.
 - To be shared between government and industry teams.
 - In a secure collaborative environment.
Required Policy and Regulations to Enable MBE (1 of 3)

• Interface standards and common data formats are needed to:
 - Ensure interoperability between models, databases, etc.
 - Enable collaboration between industry teams and government

• Procedures must be developed for:
 - The electronic archiving of solicitation (and contract) documents
 - The storage and maintenance of interim and final MBE products (with their corresponding viewing technologies)
• Sunset provisions are needed for models and other Information Technology infrastructure (hardware and software applications) in order to support MBE activities in the long run

• DFARS provisions should be updated to ensure that:
 - Digital MBE products are incorporated as binding contract clauses
 - Technical data and software embedded in models (and other digital products) are handled appropriately even when delivered with less than government purpose rights
• Conventions for encryption and digital signatures are needed to establish the authenticity, integrity and confidentiality of individual digital MBE products

• Policies will be needed to determine who can access digital products from the MBE registry (and the repositories that the registry directs them to) and under what circumstances

• Policies are needed to determine compliance with “machine-readable” specifications for contract deliverables
Recommendations

Final Report
Model Based Engineering Subcommittee
Collaboratively Work with Stakeholders to Develop the MBE Business Model (1 of 2)

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Government Role</th>
<th>Industry Role</th>
<th>Vendor Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Define the data required to construct the business cases / value propositions, and how that data will be captured</td>
<td>Establish a Government charted collaborative to define required data and metrics; lead efforts for Government stakeholders</td>
<td>Participate through Industry, Academic & Professional groups (e.g., NDIA, AVSI, INCOSE); lead efforts for Industry stakeholders</td>
<td>Incorporate metrics in tools to support continuing improvement</td>
</tr>
<tr>
<td>2. Launch a small number of model based contracting pilot projects; Encourage Programs Of Record (PORs) to participate</td>
<td>Develop MBE pilot programs; with defined goals supported by award fees, Government Labs; Incorporate in new program starts & existing PORs</td>
<td>Program deliverables, metric data processes aligned to MBE goals; Share MBE best practices with govt. & industry</td>
<td>Develop tools and technologies; evolve products; Standardize tool interfaces for interoperability</td>
</tr>
<tr>
<td>3. Conduct a “Grand Challenge” like project to accelerate the cross-discipline end-to-end MBE implementation</td>
<td>Government organization to establish budget/scope for challenge; work with industry to identify gaps; use competition/prizes to bridge gaps</td>
<td>Participate in identification of key gaps; develop teams with industry//vendors/ academia/professional groups</td>
<td>Help industry understand & leverage state-of-the-art capabilities; evolve tools & technologies</td>
</tr>
</tbody>
</table>
Collaboratively work with Stakeholders to develop the MBE Business Model (2 of 2)

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Government Role</th>
<th>Industry Role</th>
<th>Vendor Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Explore a model registry concept; assess and shape applicability of M&S Catalog and Defense Meta Data Standard</td>
<td>Appoint Government organization to lead applicability assessment of Catalog; explore Catalog extensions, alternative concepts, managed M&S environments</td>
<td>Participate in evaluation of Catalog/registry concepts; and managed M&S environments</td>
<td>Develop tools and technologies; evolve managed M&S environments & products</td>
</tr>
<tr>
<td>5. Use operational models to facilitate capability integration across programs</td>
<td>Leverage DOD Portfolio Management Initiative to establish cross-program links</td>
<td>Use model registry and interoperability standards in designs</td>
<td>Enable cross-project links in tool databases</td>
</tr>
<tr>
<td>6. Develop Sensitive Information Protection (SIP) guidelines (IP, ITAR, etc.)</td>
<td>Appoint a lead Government organization; work with like efforts (e.g., TSCP) to develop proper MBE cognizant guidelines</td>
<td>Participate in development of Guidelines through Industry/ Acad/ Prof groups; lead development of IP guidelines to accommodate MBE</td>
<td>Develop tools and technologies to accommodate SIP guidelines</td>
</tr>
</tbody>
</table>
Recommendation

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Government Role</th>
<th>Industry Role</th>
<th>Vendor Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Develop MBE Standards Roadmap</td>
<td>Appoint a lead Government organization; set objectives and timeline. Involve Industry, Associations, and International community</td>
<td>Participate in Standards Roadmap development</td>
<td>Participate in Standards Roadmap development</td>
</tr>
<tr>
<td>3. Initiate a research program to close high priority gaps in the MBE CRM</td>
<td>Establish budgets, R&D acquisition approaches (BAA, SBIR, STTR), and technology transition plan</td>
<td>Develop tools and technologies; support transition efforts</td>
<td>Develop tools and technologies; support transition into tools as appropriate</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Government Role</td>
<td>Industry Role</td>
<td>Vendor Role</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>4. Develop individual standards identified in the MBE Standards Roadmap and the MBE CRM</td>
<td>Prioritize which standards in the roadmap have the biggest impact on operational benefit</td>
<td>Provide industry perspective to develop MBE standards</td>
<td>Participate in standards development and implement MBE standards in tools</td>
</tr>
<tr>
<td>5. Provide seed funding for reference implementations of selected MBE standards identified in Roadmap</td>
<td>Establish budgets, acquisition approaches, and technology transition plan; actively work with appropriate standards organizations</td>
<td>Perform reference implementations and feed back results into MBE CRM & Standards Roadmap</td>
<td>Incorporate into tool development and evolution as appropriate</td>
</tr>
<tr>
<td>6. Develop MBE program planning guidance (how is a model delivered, documentation, CDRLs, processes, artifacts)</td>
<td>Establish chartered collaborative with DDR&E as the lead. Glean lessons learned and best practices from Pilot Projects and early adopters. Solicit input from Industry/ Academic/ Prof groups; develop and evolve Program Planning Guidance</td>
<td>Provide input to support Program Planning Guidance development and evolution</td>
<td>Provide input on tool qualification; adhere to tool qualification guidance</td>
</tr>
</tbody>
</table>
Develop the Workforce (1 of 2)

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Government Role</th>
<th>Industry Role</th>
<th>Vendor Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Use the MBE CRM to educate the holders of each role about the needs and contributions of the other roles. Encourage job rotation or cross training</td>
<td>Provide general MBE training to acquisition workforce; offer job rotation</td>
<td>Provide general MBE training to system development workforce; offer job rotation</td>
<td>Develop and offer MBE tool training that is compliant with the MBE CRM</td>
</tr>
<tr>
<td>2. Insure role based continuing education and training is available to the workforce</td>
<td>Provide role specific MBE training, offer job rotation</td>
<td>Provide role specific MBE training, offer job rotation</td>
<td>Provide role specific MBE training, emphasizing multirole tasks</td>
</tr>
<tr>
<td>3. Apply understanding of needed skills during workforce selection – recognize relevant education and experience. A strong understanding of M&S V&V is especially important</td>
<td>Consider MBE training and experience when assigning people to affected roles</td>
<td>Consider MBE training and experience when assigning people to affected roles</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Develop the Workforce (2 of 2)

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Government Role</th>
<th>Industry Role</th>
<th>Vendor Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Provide mentoring to help people and organizations adapt to a new way of doing business</td>
<td>Provide tools and capability that allow collaboration in the development and implementation of MBE</td>
<td>Provide tools and capability that allow collaboration in the development and implementation of MBE</td>
<td>Offer mentoring services to Government and Industry customers</td>
</tr>
<tr>
<td>5. Provide a mechanism to capture knowledge and incorporate it into best practices and training programs</td>
<td>Develop and evolve a knowledge base that is used by the MBE community</td>
<td>Develop and evolve a knowledge base that is used by the MBE community</td>
<td>Utilize customer feedback and lessons learned to evolve tools and update training</td>
</tr>
</tbody>
</table>
MBE Roadmap

Model-Based Engineering / Business Practice Maturity

Institutionalized MBE across all stakeholders / Full MB Acquisition

Well defined MBE / Mixed Traditional + MB Acquisition

Ad Hoc MBE / Document Centric - Traditional Acquisition

2010

2015

2020

2025

MBE Workforce Maturity

Understand the big picture – Ability to integrate modeling in all domains

Cognizant of modeling in adjacent domains

Practice modeling within a domain

Source: INCOSE MBSE Roadmap
Conclusions and References

Final Report
Model Based Engineering Subcommittee
Conclusions

• Successful wide-scale adoption and sustainment of MBE requires the development of:
 - A business model that encompasses all stakeholders
 - Technology and standards evolution
 - Skilled workforce

• DOD should work collaboratively with Industry to develop a detailed MBE Roadmap to implement the business model, standards, and workforce recommendations

• The Business Model Collaborative and Standards Consensus Conference should be launched as soon as practical

• Rapidly establish the means to actively collaborate with Industry and Professional Associations, standards organizations, and model-based initiatives in Europe and Asia
1. Proof-of-Concept Project AFE #58 Summary Final Report *produced under the System Architecture Virtual Integration (SAVI) Program* 8 October 2009

5. Complex Product Family Modeling for Common Submarine Combat System MBSE, Lockheed Martin July 2010

9. Systems 2020 Strategic Initiative Overview Briefing, Office of the Director, Defense Research and Engineering, presentation at the NDIA SE Division M&S Committee Meeting, June 2010
References and Literature Surveyed

11. Technology Tools for Rapid Capability Fielding: Final Outbrief, Office of the Director, Defense Research and Engineering, presentation at the NDIA SE Division M&S Committee Meeting, April 2010

14. Toward Model-Based Embedded System Validation Through Virtual Integration, DOD Software Tech News, Volume 12, Number 4, January 2010

15. Model Based Engineering for Medical Device Software, Ray, et. al., 2008

18. INCOSE MBSE Initiative Summary, S. Friedenthal, presentation at the NDIA SE Division M&S Committee Meeting, June 2010

19. Core Manufacturing Simulation Data Product Development Group, S. Leong, presentation at the NDIA SE Division M&S Committee Meeting, June 2010

22. Chairman of the Joint Chiefs of Staff Instruction 3170.01G, Joint Capabilities Integration and Development System, 12 October 2010

23. Defense Acquisition Guidebook, 12 October 2010

25. Army Regulation 70-1, Army Acquisition Policy, 31 December 2003

26. Department of the Army Pamphlet 70-3, Army Acquisition Procedures, 1 April 2009

28. Air Force Instruction (AFI) 16-1002, Modeling and Simulation (M&S) Support to Acquisition, 1 June 2000

References and Literature Surveyed

32. SECNAV M-5000.2, Department of the Navy Acquisition and Capabilities Guidebook, December 2008
33. SECNAVINST 4105.B, Independent Logistics Assessment and Certification Requirements, 18 December 2008
34. SECNAVINST 5000.2D, Implementation and Operation of the Defense Acquisition System and the Joint Capabilities Integration and Development System, 16 October 2008
35. SECNAVINST 5400.15C, Department of the Navy Research and Development, Acquisition, Associated Life-Cycle Management and Logistics Responsibilities and Accountabilities, 13 September 2007
36. SECNAVINST 5430.7Q, Assignment of Responsibilities and Authorities in the Office of the Secretary of the Navy, 17 August 2009
38. Navy Marine Corps Acquisition Regulation Supplement (NMCARS), 13 July 2010
39. OPNAVINST 3811.1D, Threat Support to Weapon and Information Technology Systems Planning and Acquisition, 5 June 2008
40. SECNAVINST 5200.38A, Department of the Navy Modeling and Simulation Management, 28 February 2002
41. SECNAVINST 5000.36A, Department of the Navy Information Technology Applications and Data Management, 19 December 2005
42. DON Policy on Digital Product/Technical Data, 23 October 2004