Considerations for Next Generation Combat Systems

Presented to
NDIA SLAAD Meeting
8 May 2007
Current Navy Combat Systems

- Aegis Cruisers and Destroyers almost complete
 - Modernization programs will increment capability
- Ship Self-Defense Systems being installed on CVNs and Amphibs
- Cooperative Engagement Capability (CEC) being installed as is
- Open Architecture (OA) is not a Combat System
 - Focus is more on affordability through commonality
- SIAP is only one dimension of combat system capability
- DD(X) Combat System is an evolutionary step to OA
- LCS Combat System resulted in insufficient littoral defense

Where are we going? What is the future of combat systems?
Future Combat System Challenges

- Multi-unit, cross mission real-time planning
- Net-centric Command and Control
 - Control of multi-unit, dispersed and different forces
- Use of wide-band information
 - ISR Sources and GIG databases
 - Maritime Domain Awareness
 - NCID and discrimination
- Radar resource management
- Weapons resource management
- Reduced Manning compatibility with high intensity multi-dimensional warfare
Evolution to Open Architecture

1990
- CEC
 - COTS HW
 - Production COTS HW
 - Distributed architecture

1995
- SSDS
 - COTS Networking
 - COTS HW

2000
- AEGIS Baseline 7
 - All COTS HW
 - COTS Networking

2005
- DDX
 - TSCE Environment Definition
 - COTS HW/SW
 - Middleware
 - Open interfaces

- SIAP / IABM
 - Open Standards
 - Open Technology Insertion

- SSDS OA
 - COTS HW/SW
 - CAT3 OA Compliance

- APB / ARCI
 - COTS HW & SW
 - Open development process

- CS@SE
 - COTS Displays
 - Open Standards
 - Open Technology Insertion

- HiPer-D
 - AEGIS COTS HW & Middleware performance demos

Common Display Kernel
- COTS HW & SW
- Open development process
Advances and Challenges in Pursuing Open Architecture
A Navy Combat System Perspective

- **Advances**
 - Capitalize on COTS HW
 - though each program is independent
 - Use of COTS middleware and standards
 - Application of modern software development and testing techniques

- **Challenges**
 - Achieving “plug and play” compatibility
 - Ensuring interoperability
 - Testing efficiency
 - Industry incentives
 - Training, maintenance, and logistics
 - Forward / backward interoperability
Current APL-related OA Activities

A Brief Summary

- ARCl and APB processes for submarine community
- Common SIAP
 - IABM concept, development, and testing
 - JTM (Joint Track Manager) Architecture
- Support to IWS-7
 - ARCl process expertise
 - Proposals for prototyping open process:
 - MMSP, surface tracking, performance based engagement
- AAW / BMD baseline merge (OA compliance)
- Aegis OA technical review
- APL IRAD: Next Generation Combat Systems
 - Common components and systems engineering process
Next Generation Combat Systems Attributes

- NOT Single Unit/System Centric
- Joint – from the Start
- GIG Compliant
- IAMD Architecture Compliant
- Multi-mission
Next Generation Combat Systems

- Global Command and Control
- Distributed Collaborative Mission Planning
- Mission Sensor Planning & Asset Stationing
- Real-time Intelligence and Crisis Action Planning
Next Generation Combat Systems

- Single Integrated Picture
- Net-Centric, Globally Integrated
 - Air, Maritime, Space
- Consistent Combat ID
- Real-time ISR and All Source ID and Tracking
- Netted Early Warning (Space, Air, Ground)

Deployed Forces

E2C, DDG 1000, CV, CG/CG(X), LCS, Mission Ops, JSTARS, Global Hawk, PAC-3, DSP/SBIRS, Deployed Forces, National Assets, National Intel
Next Generation Combat Systems

- Advanced Battle Management
- Integrated Fire Control
- Distributed Weapons Control
- Distributed Sensor Control
- Real-Time Coordinated Engagement Planning

Deployed Forces

- JSTARS
- THAAD
- PAC-3
- Global Hawk
- National Assets

Mission Ops

- E2C
- DDG 1000
- CV
- CG/CG(X)
- LCS

CG/CG(X)

Mission Ops

DDG 1000

JSTARS

Global Hawk

0700026_UK_8
Next Generation Combat Systems

- Coordinated Attack Operations
 - Air, Strike, Artillery, etc
- Information Operations
- Ship, Air, Ground Maneuvers
- Time-Critical Strike
 - Real-time ISR to shooter control loop
Conclusions

- We are very focused on the present systems and requirements
 - Affordability trumps capability considerations
- Historical sponsored work on advanced combat system capabilities has diminished significantly
 - Even S&T efforts are difficult to sustain
- It is time to do a forward look at future combat system architectures and characteristics
 - Start to work on key enabling technologies
 - Create a vision that will inspire sponsors to invest limited funds
- Need to take advantage of our collective experience Lab-wide
 - Multiple warfare areas
 - Different acquisition approaches
 - Various sensor and weapon technologies
 - Innovative processing and HMI