OceanLink –

Advanced Underwater Communications
At Speed and Depth

Greg Hays
843.412.1818
greg.hays@tplogic.com

Dr. Leo Volfson
858.382.7200
lbv@tplogic.com
OPERATIONAL NEED

Objective: Design and build a 2-way communication system from a submarine to a surface, airborne or underwater platform with as wide an angle of view as possible, while avoiding conspicuous operation and detection by creating a 1Mbps optical channel between a submarine underway and below water surface at distances exceeding 10km.

Value to Naval Warfighter: Anti-jam comms to disadvantaged platforms, while underway. Fiber cable fed out of submarine will contain no electronics and if broken, becomes disposable.

S&T Focus Area: Laser Communications, Fiber (side or 360 degree emitting and receiving sensing)

Impact if Not Addressed: continued operational need

PROPOSED SOLUTION

The Technology:
• Continued development of transmitting and receiving fibers that provide an omni-directional antenna pattern
• Deployment methods from a submarine while underway
• Controllable field of view once the beam breaks the surface from being very wide (120 degrees) to very narrow

Similar/Related Projects:

TRL: Current: 2; Projected at end (FY10) 6

Major goals/Schedule by Fiscal year:
• FY09- Feasibility Study & Breadboard Demo
• FY10- At-Sea Demo (UW to Air & UW to UW)

Last Updated: Mar-09

BUSINESS CASE

Key Metrics:
• Solar Glint Calculations, Selection of Wavelength, Selection of Laser, Link Budget, Turbulence Mitigation, & Final Architecture

Proposed Funding ($M):

<table>
<thead>
<tr>
<th></th>
<th>FY09</th>
<th>FY10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONR</td>
<td>$0.915M</td>
<td>$1.05M</td>
<td>$1.965M</td>
</tr>
</tbody>
</table>

Partners:

Transition Sponsor: TBD

POC Contact Info:
Torrey Pines Logic
Dr. Leo Volfson • 858.382.7200 • lbv@tplogic.com
Greg Hays • 843.412.1818 • greg.hays@tplogic.com
Project Plan

<table>
<thead>
<tr>
<th>Task Name</th>
<th>M-1</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M7</th>
<th>M8</th>
<th>M9</th>
<th>M10</th>
<th>M11</th>
<th>M12</th>
<th>M13</th>
<th>M14</th>
<th>M15</th>
<th>M16</th>
<th>M17</th>
<th>M18</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I: Fiber Development & Demo</td>
<td></td>
</tr>
<tr>
<td>Develop model for a side emitting fiber</td>
<td></td>
</tr>
<tr>
<td>Obitating of the fiber, test & measurement</td>
<td></td>
</tr>
<tr>
<td>Develop model for light sensing fiber</td>
<td></td>
</tr>
<tr>
<td>Design, development and testing of omni-directional spherical photodiode</td>
<td></td>
</tr>
<tr>
<td>Modify Optical receiver and testing</td>
<td></td>
</tr>
<tr>
<td>Communication scheme design, error analysis and recovery mechanisms</td>
<td></td>
</tr>
<tr>
<td>Conceptual Demonstration</td>
<td></td>
</tr>
<tr>
<td>PHASE II: Integration into Submarine</td>
<td></td>
</tr>
<tr>
<td>Phase I Evaluation / Review</td>
<td></td>
</tr>
<tr>
<td>Incorporation on Lessons Learned</td>
<td></td>
</tr>
<tr>
<td>Design/Receiver Station and Link Schemes</td>
<td></td>
</tr>
<tr>
<td>Design the concept for the submarine Light Source</td>
<td></td>
</tr>
<tr>
<td>Integration of Components into Breadboard System</td>
<td></td>
</tr>
<tr>
<td>System Testing and Evaluation</td>
<td></td>
</tr>
<tr>
<td>Demonstration in a Simulated Environment</td>
<td></td>
</tr>
<tr>
<td>Build System Prototype</td>
<td></td>
</tr>
<tr>
<td>System Testing and Evaluation</td>
<td></td>
</tr>
<tr>
<td>Final Demonstration in a Relevant Environment</td>
<td></td>
</tr>
</tbody>
</table>

Project Details

Project Start: March 2009
Sponsor: Office of Naval Research SwampWorks
Project Managers: SPAWAR Atlantic & PEO LMW
Omni-directional Transmission

- "Glowing Fiber" – product development, concepts:
 - Fiber creates perfect 360 degree antenna
 - Remote viewing of the fiber can be over km
 - Fiber can transmit video, audio and data
 - Multiple viewers can see transmission
 - Fiber transmission provides 1000’s channels
 - Provides persistent day/night surveillance:
 - Surveillance of suspicious buildings
 - Route surveillance
 - No training required for system utilization
Multi-material Fibers Outline

- Insulating Polymer
- Gain Medium
- Amorphous Semiconductors
- Metal
Multi-material Fibers Pre-form Processing

a) THERMAL EVAPORATION
 POLYMER ➔ GLASS

b) Thermal Rotation

c) Thermal Drawing

d) Material Coating

e) Macroscopic Preform

f) Macroscopic Preform
10mm

g) Kilometer-long Nanostructured Fiber
Solar Glint Calculations, Signal Strength & Fiber Depths

Global map of water leaving radiance averaged over 2005.

Courtesy of ESA and MERIS level 3 data *

Link budget for fibers projected from various depths and a surface-floating, side-emitting fiber.

Same as figure to the left but zoomed in on the range to emphasize the handicapped surface-floating fiber operation.
Integration Into LightSpeed Products

Conference Calling

Heads Up Display

Integrated LightSpeed Chip

TPL Glowing
Communication Fiber

LightSpeed Fiber

40mm LightSpeed Projectile

OceanLink

Torrey Pines Logic
OceanLink

- Mature, Reliable Technology
- Family of Products
- Many Stakeholders
- Multiple Applications

Check out product overviews, brochures, specifications, and videos at: http://www.tplogic.com