Fault Tolerance in a Real Time Weapon Control System

- **Authors and Reviewers**
 - James G. Shumate 410-682-1716
 james.g.shumate@lmco.com
 - Ralph W. Edwards 410-682-0805
 ralph.edwards@lmco.com
 - George H. Goetz 410-682-2286
 george.goetz@lmco.com
 - Jennifer L. Houston-Manchester 410-682-0793
 jennifer.houston-manchester@lmco.com
 - Ben Skurdal 410-682-0590
 benjamin.skurdal@lmco.com

- **Address**
 Lockheed Martin
 MS2 Littoral Ships and Systems
 2323 Eastern Blvd.
 Baltimore, Maryland 21220
Lockheed Martin
Littoral Ships & Systems

History - LS&S is part of the MS2 (Maritime System & Sensors) organization. MS2 is 13,000 people strong and supports more than 500 programs for US and nearly 50 international customers.

LS&S Lines of Business

- Launching Systems
 - MK41 Vertical Launching System (VLS)
 - Non-Line of Sight LS (NLOS)
 - Electromagnetic Launching System
 - Terminal High Altitude Area Defense (THAAD)

Domain Experience

- Fault Tolerance in DRE Systems
- Control Systems
- Open Architecture
- Distributed, R-T Embedded Applications

Littoral Combat Ship (LCS)

Ship Systems
The Domain

- Launching Systems
 - Configurations
 - 1-122 weapon cells in single or modular form
 - Weapon Control Systems (11)
 - Launch Sequence Control
 - Availability, Reliability & Safety

- Drive for Open Architecture
 - Total Ship Computing Env.
 - Reduce Cost & Time to Market
 - Open Business Practices

- Domain Knowledge Required
 - Fault Tolerance Principles
 - Network Architectures and Protocols
 - Distributed, Real Time Embedded Applications
Fault Tolerance Attributes

- Fault Tolerance
 - Redundancy
 - Hardware, Software, Both
 - Failover, Recovery
 - Manual, Automatic
 - Redundant Communications
- Styles – How and when to achieve state coherency
 - Passive
 - Active
 - Stateless

- Quality Attributes
 - Availability
 - Tightly Coupled with:
 - Safety
 - Maintainability
 - Reliability
- Tactics
 - Detection
 - Recovery (Failover)
 - Prevention
FT in Real Time Applications

- **Driving Requirements**
 - Real Time Responses
 - Size
 - Cost
 - Complexity
 - Distribution

- **Open Architecture Readiness**
 - Standards Organization
 - Vendors – Tools and MW
 - Customer Requirements
 - Contractors - adaptability

- **Single Point of Failure**

![Diagram showing a client, Ethernet switch, application, and some other server with single points of failure.](image-url)
Example Redundancy Strategy

Context View

- Redundant Ethernet Switches.
- Multiple points of failure supported.
- Existing interfaces (IDS).

"Open Architecture Naval Warfare Systems requires component replication as the primary way to achieve a fault tolerant system."
Middleware Standards and COTS Products

COTS

- RTI DDS
- LynxOS
 - RTOS – POSIX
 - NTP
- Linux

Open Source

- TAO (CORBA)
- Spread
- MEAD
- DDS (OCI)
- FT HA (OCI)

Benefits

- Standards-based
- Quality of Service

Limitations

- Cost, Complexity, Portability, support

Emerging Standards - Spread

- Reliable Multicast
- Scalable Group Services
- Membership Services
- Message Ordering
 - Total Order of Messages
Transforming the Current Launching Systems Solution

Benefits: Reduced All
- **FT SLOC:** 6600 to (950 + COTS)
- **# Requirements:** 366 to 10
- **Failover Time:** 100 ms to 10 ms
- **Recovery Time:** 50 ms to 5 ms

- Application isolated from transport mechanisms
- FT MW layer supports redundant transmission and arbitration
- Spread provides synchronized exchange of state
- Distributive MW used for application communications
- Flexible Configurations
Challenges and Solutions

- **General Solution and Attributes**
 - Independent of the Application
 - Easy to use and to extend
 - Standard Communications
 - Small Footprint

- **The LM Solution**
 - Real Time Failover through Active Redundancy
 - State Coherency to 10-millisecond resolution
 - Redundant Network Coordination
 - Dynamic Recovery Scheme
 - Remote Monitoring
 - Scalable