Overview: Robotics Alliance to National Defense Industrial Association-Robotics Panel

13 December 07
Robotics CTA Members and Objectives

<table>
<thead>
<tr>
<th>Consortium Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Dynamics</td>
</tr>
<tr>
<td>Robotic Systems</td>
</tr>
<tr>
<td>(Lead Industrial Partner)</td>
</tr>
<tr>
<td>Carnegie Mellon University</td>
</tr>
<tr>
<td>Applied Systems</td>
</tr>
<tr>
<td>Intelligence</td>
</tr>
<tr>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>Alion Science & Technology</td>
</tr>
<tr>
<td>BAE Systems</td>
</tr>
<tr>
<td>Sarnoff Corporation</td>
</tr>
<tr>
<td>SRI International</td>
</tr>
<tr>
<td>Florida A&M University</td>
</tr>
<tr>
<td>University of Maryland</td>
</tr>
<tr>
<td>PercepTek</td>
</tr>
<tr>
<td>Robotic Research</td>
</tr>
<tr>
<td>Signal Systems Corp</td>
</tr>
<tr>
<td>Howard University</td>
</tr>
<tr>
<td>NC A&T University</td>
</tr>
<tr>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td>Skeyes Unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make the research investments that support the Army’s robotic system development goals:</td>
</tr>
<tr>
<td>• Develop perception technologies that allow robotic vehicles to sense and understand their environment;</td>
</tr>
<tr>
<td>• Develop intelligent control technologies and architectures enabling robotic systems to autonomously plan, execute, and monitor operational tasks undertaken in complex, tactical environments;</td>
</tr>
<tr>
<td>• Develop human-machine interfaces that allow soldiers to effectively task robotic systems and minimize operator workload.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Perception</td>
</tr>
<tr>
<td>Intelligent Control & Behavior Development</td>
</tr>
<tr>
<td>Human / Machine Interfaces</td>
</tr>
</tbody>
</table>

Consortium Members:
- General Dynamics
- Robotic Systems (Lead Industrial Partner)
- Carnegie Mellon University
- Applied Systems Intelligence
- Jet Propulsion Laboratory
- Alion Science & Technology
- BAE Systems
- Sarnoff Corporation
- SRI International
- Florida A&M University
- University of Maryland
- PercepTek
- Robotic Research
- Signal Systems Corp
- Howard University
- NC A&T University
- University of Pennsylvania
- Skeyes Unlimited
Robotics CTA Task Areas

Requires advancing the state of the art in three critical areas:

- **Perception**
- **Intelligent Control**
- **Human Machine Interface**

Requires integrating research advances from all three areas using a system-level approach to provide a mechanism for:

- Field experimentation and research validation
- User input
Advances in Sensors and Perception

LADAR Development & Processing Algorithms

Terrain Classification

Moving Agent Understanding

Air / Ground & Mid-Range Sensing
Advances in Human Machine Interface

Scalable Human Machine Interfaces

Multi-Modal Input

Workload / Trust in Automation

HMI Interface Extensions
Evaluation and Experimentation

Overview

Stages of Experimentation and Integration

<table>
<thead>
<tr>
<th>Proof of Concept Testing with COTS Hardware</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Researchers test proof of concept in their own labs with commercial off-the-shelf (COTS) hardware. The image at right is from the Carnegie Mellon Robotics Institute Laboratory.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perception and Autonomous Navigation Testing with GDRS Standardized Test Facilities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GDRS facilities are used to test perception and autonomous navigation tasks. Data is analyzed against the ground truth of known obstacles. ARL and NIST design quantitative experiments.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulation Testing with RCTA SIL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The RCTA Systems Integration Lab (SIL) at GDRS provides a hardware-in-the-loop simulation testbed for Advanced Perception, Intelligent Control Architecture (ICA) and Human Machine Interface (HMI) technologies.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integration and Testing in Realistic Environments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New technology is integrated and tested on the Demo III XUV and commercial vehicles in various terrains including rolling and forested terrain, as well as a MOUT environment at Fort Indiantown Gap.</td>
<td></td>
</tr>
</tbody>
</table>
Fort Indiantown Gap, Pennsylvania
Robotics Lab and Test Facility

- State-of-the-art Robotics Facility located at Ft. Indiantown Gap, PA.
- Realistic environment for Field Experimentation currently used as a training facility
 - 10th Mtn. Division Exercises
 - 20th ID Training prior to deployment in Iraq
 - Stryker Brigade
- Facility Statistics
 - 5,000 sq. ft. Office / Lab Space
 - 3,500 sq. ft. High Bay
 - Floor capable of supporting large vehicles such as Stryker
 - TVMA-B Range 4km x 1.5 km
Hardware-in-the-Loop Simulation

- Capability Developed in FY 2007
- Leverages Visualization Technology from COTS Gaming Technology
- Exploits Graphics Technology to Emulate Vehicle Sensors
Hardware-in-the-Loop Simulation: Benefits and Uses

• Benefits
 – Engineers: Closed-Loop Desktop Test Environment
 – Soldiers: Scalable, Coherent Evaluation Environment

• Uses
 – Exercise Perception Algorithms
 – Exercise ICA & Tactical Behavior Algorithms
 – HRI Development
 – Workload Theory Data Collection
 – Soldier Training
Robotics CTA Technology Transfer

DEVELOP technologies to meet current and anticipated military needs……..

ASSESS applicability of developed technologies to new applications as they arise through interaction, analysis and integrated field experimentation……..

TRANSFER technologies to maximize investment and advance the state-of-the-art!!!
RCTA Transitions to FCS ANS

- Provided the technical foundation for FCS-ANS and the demonstration in 2003 that was instrumental in funding FCS unmanned ground systems
 - Field-tested LADAR hardware
 - LADAR processing algorithms for obstacle detection, classification algorithms for obstacle detection, and terrain classification
 - Engineering visualization tools for LADAR and vehicle planner development
 - Field-tested robotic testbed platforms (with interfaces to navigation sensors), capable of data collection and archiving in realistic tactical environments
 - LADAR optics, TX/RX electronics and processing firmware (FFT, multi-pulse, ranging, etc.)
 - Passive perception system algorithms; stereo correlator, rectification and pyramid algorithms
RCTA Transitions to TARDEC’s VTI RF and CAT STO

- All hardware and software perception sensors
- Sensor processing algorithms
- Vehicle planners
- Planning algorithms via Terrain Reasoner
- Selected tactical and cooperative behavior algorithms
- Perception technologies from the 3500-pound XUV testbed to the 18-ton Stryker vehicle
- SMI related components
RCTA Transitions to PM-FPS MDARS

- Perception Sensors (LADAR and EO/IR)
- Sensor processing algorithms
- Vehicle planners and OA Planning algorithms
- LADAR optics and TX/RX electronics
- LADAR processing firmware (FFT, multi-pulse, ranging, etc.)
- Acadia Vision Processor
RCTA Transitions to DARPA OAV-II

- LADAR Core Sensor Technology
- Sensor Processing and Obstacle Avoidance/Path Planning Algorithms
- Human-Robotic Interface and Command and Control Technologies
RCTA Transitions to AATD UACO

- UGV Perception Sensors and Demonstration Platforms
- UGV and LADAR Sensor Processing Algorithms
- Vehicle planners and OA planning algorithms
- Market-Based Collaborative Tasking Algorithms
- SMI Interface, Decision Support System, and Terrain Reasoner
- Air / Ground Cooperative C2
- Test and Demo Facilities
Transitions to Other Government Programs

<table>
<thead>
<tr>
<th>Summary of RCTA Transitions to Other Government Programs</th>
</tr>
</thead>
</table>
| **DARPA Robotic Vision 2020 (RV2020) Program** | • Real-time optical flow algorithm that runs in parallel with stereo ranging to develop a moving obstacle detection on-the-move capability
 • Run-time stereo algorithms on a compact smart camera board |
| **DARPA Perception for Off-road Robotics (PerceptOR) Program, and Unmanned Ground Combat Vehicle (UGCV)** | • Visual pose estimation capability to provide accurate autonomous vehicle position estimation during extended GPS-denied operation
 • Stereo bilateral pre-filter |
| **DARPA Multi-Spectral Adaptive Networked Tactical Imaging System (MANTIS) Program** | • Pose and 3D estimation capabilities to provide accurate position and orientation estimation based on visual inputs from helmet mounted VNIR and SWIR sensors |
| **DARPA Learning Applied to Ground Robots (LAGR) Program** | • Large-baseline stereo analysis |
| **USMC Self Mobile Trailer (SMT) Program** | • Perception Sensors and Processing Algorithms
 • Vehicle Path Planning & Control |
| **Robotic Systems JPO – Ground Standoff Mine Detection System (GSTAMIDS) Program** | • Actuation and low-level vehicle control |
| **TARDEC Safe Operations Program** | • Perception, Planning & Tactical Behaviors |
| **TARDEC Near-Autonomous Unmanned System STO (formerly ARV Robotics Technology STO)** | • Perception, Planning & Tactical Behaviors |
| **NASA Mars Technology Program** | • Run-time stereo algorithms and 3D stereo range visualization and diagnostic tools for integration into future Mars Rovers |

- TARDEC
- DARPA
- Robotic Systems JPO
- NASA
FCS Risk Mitigation Accomplishments

- FCS Risk 213 – Safe Operations
- 11 Research Tasks, 4 Sensor Modalities
 - Assessments Designed by ARL & NIST
 - Approval for Live Human Experimentation
 - Common Evaluation Platform
 - 3 Quantitative Assessments in 2007
 - Additional Assessments in 2008
RCTA Focus Going Forward
Advanced Perception

• Continued Emphasis on Safe Operations
 – Focus future research on detecting and tracking of **humans** to meet FCS criteria for safe operations
 – In any and all terrain types
 – Upright, crouched, prone
 – Occluded, emerging from occlusions
 – Fast detection, accurate tracking
 – Long ranges (100 m), varying speeds (up to 40 mph)
 – Anytime, anyplace, anywhere
RCTA Focus Going Forward
Advanced Perception

- Develop better/faster **obstacle detection and classification** algorithms to improve speed in open/rolling terrain and urban environments.

- Emphasize **local situational awareness and scene understanding** to address the development and maintenance of an operational picture.

- Advance **perception algorithms for mid-range planning** in order to enhance planning for safe operations, effective reconnaissance and tactical behaviors.

- Advance **cooperative perception and planning** among heterogeneous assets including airborne perception for use as a planning aid.
RCTA Focus Going Forward
Intelligent Control Architectures

- Develop technologies to support FCS Requirements for **Deliberative Planning** in support of safe operations in dynamic environments
 - GPP planner, multi-resolution planning, planning with uncertainty
 - Collaborative planning for heterogeneous robots
- Enable **Local Planning for Autonomous Safe Operations**
 - Incorporate vehicle dynamics
 - (x,y,t) planning, etc.
- **Combining Global and Local Planners**
 - Field Interface at the cost level
 - AM data used by the global planner
RCTA Focus Going Forward
Intelligent Control Architectures

• Develop **Supporting Tools** to enhance Algorithm Development
 – Visualization for planning algorithms
 – Hardware-in-the-loop sensor simulation
 – Simulated data to test new approaches

• Integrate **Perception-Based Feedback** into Tactical Behaviors
 – Bowls, tree lines, urban sight lines, intervisibility, etc.

• Enable **Best-Information Planning** for robotic command and control
 – Ingest real-time data from aerial sensors, a-priori maps, AM sensors
RCTA Focus Going Forward

Human Machine Interface

- Develop **HMI Extensions** to support increased situational awareness and operator control in cluttered environments
 - Support human detection for safe operations
 - Enhance visualization for situational awareness
 - Enhance simulation tools
 - Improve Spoken Language Interface

- Quantify **Human Performance and Cognitive Capability** during control of multiple heterogeneous robots
 - Data collection with UAMBL to support FCS concept development
 - ARL data collection to support AM / Reconnaissance workload