Service Oriented Manufacturing
Supporting NCM and MBE

Status Report for NDIA Manufacturing Division
October 28, 2010

Mike McGrath
ANSER
michael.mcgrath@anser.org
Topics

• Background and updated thoughts on SOM

• Actions since last meeting (12 Aug)
 – Service Oriented Manufacturing (SOM) session at Defense Manufacturing Conference (DMC)

• Beginnings of an implementation strategy
 – Possible next steps
To review the bidding …

Trial Balloon discussed by Mike McGrath and Jack White
(Feb 2010 Meeting of NDIA Manufacturing Division)

- If we think of manufacturing as a set of services, then the processes, information and business linkages within and among members of a supply chain can employ:
 1. Service Oriented Architecture (SOA) concepts, and
 2. The best practices of the services sector

- We call the combination of these two Service Oriented Manufacturing (SOM)

- NDIA advocacy for SOM could catalyze change and innovation in US manufacturing, and stimulate DoD investment in areas where R&D is needed.
Still Calibrating the Idea
Technology Committee and Supply Chain Committee

• Identify Use Cases
 – Examples where service orientation has made or could make a difference
 – Assess benefits and technology gaps to inform government R&D planning

• Relevant trends and information sources:
 – Commercial IT vendors
 – CAD/CAE vendors
 – Manufacturing Service Companies
 – Supply chain management services
 – DoD NetCentric Warfare

• NIST Workshop, 5 Aug 2010

• DMC, 29 Nov – 2 Dec 2010
Example from NetCentric Warfare C2

High Level Operational Concept (OV-1)
Desired Attributes of a Multi-Service C2 Support System

Robustness: maintains effectiveness in supporting decision makers across all information producers, consumers, information types, supporting infrastructure –

Resilience: recovers from or adjusts to degraded infrastructure, lost or unavailable participants and lost, unavailable or degraded information products

Responsiveness: reacts to a change in the operational environment, ensuring the C2 System will keep pace with the desired OPTEMPO of all Enterprise decision makers

Flexibility: employs multiple ways to effectively use, share, transform and protect information, regardless of the operating environment or C2 System.

Innovation: enables decision makers to interact with the C2 System in ways that were not anticipated upon initial development and employment

Adaptability: supports rapidly changing work processes through adapting workflows and the ability to change the organization through reassignment of roles and responsibilities

Trustworthiness: ensures trust in its operation and delivery of information for all decision makers and that critical information is predictable and appropriately handled
Further Thoughts on Service Oriented Manufacturing

5 Aug NIST Workshop and Subsequent Discussions

• Ends, Means, and Scope
 – SOM is a means: enabler for MBE and SOM

• Technical and business dimensions
 – Technical architecture (SOA) for internal and external interoperability
 – Business practices to provide return on investment

• Different use cases appeal to different stakeholders
 – M2 .50 Cal Machine Gun spare part
 – Interoperability and supply chain sharing of MBE models
 – Factory floor networks and scheduling
 – DARPA META, iFab and Vehicle Forge scenarios

• Reference Architecture and Standards are needed
 – But services will be built from the bottom up
GCMA “Round Trip Matrix”
(Global Collaborative Manufacturing Architecture Study, 2009)

Applications
<table>
<thead>
<tr>
<th>Programs/Lines of Business</th>
<th>Aerospace</th>
<th>Ground</th>
<th>Ship</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avionics</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defensive systems</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offensive systems</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navigation Systems</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Communication Systems</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Resources

<table>
<thead>
<tr>
<th>Providers/Systems (Capability Providers)</th>
<th>University Research</th>
<th>Environmental</th>
<th>Services R&D</th>
<th>Congressional</th>
<th>CALCE or IR&D</th>
<th>ManTech</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XYZ Electronics Company</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>U of MD</td>
<td>U of KY</td>
<td></td>
</tr>
<tr>
<td>U of MD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC Specialty PCBs, Inc.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Specialty Metals Co.</td>
<td></td>
</tr>
<tr>
<td>Specialty Metals Co.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manufacturing Capabilities

Requirements
- Processes to re-ball grid arrays
- Development of a "whisker tough" coating
- Reliability characterization for new solders
- Fundamentals of whisker growth and formation
- Mixed alloys ball grid array reprocessing
- Components reprocessing
- Mixed solder evaluation
- Modeling for system effectiveness

Costs

Activities

Decision Support Services

- Assess
- Plan
- Invest
- Execute

Providers/Systems (Capability Providers)

<table>
<thead>
<tr>
<th>Green = Some funding in place</th>
<th>Yellow = Potential for funding</th>
<th>Red = No funding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Green = Strong Interest
Yellow = Moderate Interest
Red = Little Interest
Mapping to a Reference Architecture
This is a **Big** Job

- Not appropriate or feasible for NDIA to build the architectures and services
- Possible for NDIA to be an advocate and catalyst for change
- The trick will be to find the right things to advocate
 - Some may be industry funded
 - Some may be standards bodies activities
 - Some may be government R&D and implementation programs
- Suggest we revisit this in January, based on discussions at DMC
AME Agenda for DMC 2010
(Session Organizers)

• **November 29:** AME Track from 1:30 – 5:00
 – Session 1: AME Goals and Strategies (Boden)
 – Session 2: Service Oriented Manufacturing Initiative (McGrath, Gordon)

• **November 30:** AME Track from 1:30 – 5:00
 – Session 3: Model Based Enterprise Initiative (Harris, McGinnis)
 – Session 4: Network Centric Manufacturing Initiative (Luckowski, Peters)

• **December 1:** AME Track from 1:30 – 5:00
 – Session 5: Discuss AME Gaps (Patterson, Kessler)
 – Session 6: The Way Forward on AME (Boden, sub panel)

• **December 2:** AME Track from 1:30 – 5:00
 – Session 7: Model-based Methods and Tech Data issues

Each Session:
Structure: 1 hour of presentations and 30 min Panel
Intent: Define topic with examples and position within the AME strategy
Planning for the SOM Session

Technology Committee

• Actions since 12 Aug NDIA Mfg Div Meeting
 ▪ 16 Sep -- phone conference on candidate use cases
 ▪ 15 Oct -- abstracts sent to Track Chair (Brench Boden)
 ▪ 18 Oct -- 3 abstracts selected, 2 held for future action

• Agenda for AME Session 2 (29 Nov)
 3:30 – 5:00 Panel on Service Oriented Manufacturing
 Mike McGrath – Moderator
 Speaker TBD (Oshkosh) – MATV Example
 Jack White (Jacobs Technology) – Business Case for SOM
 Charlie Stirk (CostVision) – Roadmap for SOM Technologies
 Moderated Q&A with audience
Backup Charts
Implementation Strategy

Goal: Sufficient infrastructure (standards and mediation) to support a market for manufacturing services that will enable benefits in defense industrial base.

Next Steps

• Develop use cases and reference architecture
• Analyze gaps and build roadmap for services
• Select/enhance standards and SOA design patterns
• In parallel work with DoD to:
 – Initiate demos and pilot programs with available standards
 – Develop a SOM research agenda

Need a few initial focus areas
Possible Focus Areas

• Product development, engineering, prototyping, and testing.
 – SOA infrastructure for MBE and additional SOM services to support prototyping, tooling, and testing.

• Fast, agile production.
 – DARPA innovations like META, FAB and Vehicle Forge.

• Supply chain operations and collaboration
 – SOA infrastructure for NCM, with services for trust management, visibility, risk management, collaboration, material management, scheduling.

• Product support and sustainment.
 – Services necessary to manage performance-based logistics service networks.
Proposed Next Steps

• Revisit in January based on discussions at DMC
• Plan a workshop (possibly with AFEI and/or NIST) to:
 – Hear from experts and practitioners
 – Map concepts and lessons to one or more SOM focus areas
 – Identify the points of leverage for NDIA to advocate and support
Example of Services for Engineering
VIVACE European Aerospace Consortium

Figure 9: WP3.6 work methodology: Example only, 3.6.2 is specifying a set of generic Web Services