COMBATING REVERSE ENGINEERING THROUGH TRANSIENCE

Dr. Troy Olsson, DARPA/MTO Program Manager

NDIA Trusted Microelectronics Workshop

August 16, 2016

The DARPA solution is to provide a menu of hardware security options that can be selectively applied based on need

			Microelectronics Security Threats				
	Protection	Program	Loss of information	Fraudulent products	Loss of access	Malicious insertion	Quality and reliability
High Government Intervention	Government- proprietary	Other	•				
	Fine Disaggregation and Transience	TIC (IARPA)	•	•	•	•	
		VAPR	•				
	Functional Disaggregation	SPADE	•			•	•
		DAHI	•		•	•	
		CHIPS	•		•	•	•
High Commercial Sponsorship	Obscuration and Marking	CRAFT			•		•
		eFuses	•			•	
		SHIELD	•	•			
	Verification and Validation	IRIS		•		•	•
		TRUST		•		•	

VAPR will help protect intellectual property in DoD microelectronics.

VAPR program objective

Develop a toolkit that allows for microelectronic systems to vanish in a controlled manner on command

High performance microsystems that physically disappear resulted from the program

VAPR vanishing requirements

- Requirements were placed on the vanishing modality to ensure clandestine operations and environmental safety
- Camouflage was not considered vanishing

VAPR transient glass substrate

Prince Rupert's drop

- Formed by rapidly cooling molten glass
- Compressive stress on the surface and tensile stress at the core
- Stress gradient results in high toughness
- Surface damage results in rapid disintegration into fine particles

PARC's transient substrate

- Stress gradient formed by ion exchange of glass
- Similar to Gorilla Glass process
- Highly controlled stress profile

VAPR glass substrate demonstration

Demo: Trigger initiates rapid heating and cooling above resistor to initiate crack formation

<u>Demo: Robustness during handling</u> <u>and storage</u>

Video not included here

Stable until Triggered to Vanish!

VAPR glass substrate fragmentation

(U) 0.25 mA hr, peak current of 1 A

VAPR functional vanishing chips

- Enhanced security through vanishing electronics
- Strain energy transferred from PARC substrate to COTs chips
- Fragmentation of ICs and substrates to particle sizes < 250 μm
- Goal to achieve no visible remnants after triggering

silicon (transfer)

GaAs epilayer (transfer)

InP epilayer (transfer)

Image Courtesies: PARC

- DARPA VAPR Program has demonstrated a frangible glass substrate that can fracture into < 250 μm particle upon triggering
- Robust handling and storage of the frangible glass has been shown
- Fracture propagation through diverse set of chips has been demonstrated
- Functional devices have been produced that demonstrate use of COTS devices, these devices can monitor temperature and receive RF signals

