LEVERAGING THE COMMERCIAL SECTOR AND PROVIDING DIFFERENTIATION THROUGH FUNCTIONAL DISAGGREGATION

Dr. Daniel S. Green, DARPA/MTO Program Manager

NDIA Trusted Microelectronics Workshop

August 17, 2016

The DARPA solution is to provide a menu of hardware security options that can be selectively applied based on need

			Microelectronics Security Threats					
	Protection	Program	Loss of information	Fraudulent products	Loss of access	Malicious insertion	Quality and reliability	
High Government Intervention	Government- proprietary	Other	•					
	Fine Disaggregation and Transience	TIC (IARPA)	•	•	•	•		
		VAPR	•					
	Functional Disaggregation	SPADE	•			•	•	
		DAHI	•		•	•		
		CHIPS	•		•	•	•	
	Obscuration and Marking	CRAFT			•		•	
		eFuses	•			•		
ercial		SHIELD	•	•				
High Commercial Sponsorship	Verification and Validation	IRIS		•		•	•	
High (TRUST		•		•		

DAHI and CHIPS can help protect against the malicious introduction of unknown functionalities into ASIC products.

Heterogeneous integration: Broadens the device material options

Terminology:

InP = indium phosphide, GaN = gallium nitride, SiGe = silicon germanium, ABCS = antimonide-based compound semiconductor HBT = heterojunction bipolar transistor, HEMT = high electron mobility transistor, CMOS = complementary metal oxide semiconductor COSMOS = Compound Semiconductor Materials on Silicon

COSMOS program showed the promise of heterogeneous integration

COSMOS: Demonstrated benefits of integration of **completed** devices

Diverse Accessible Heterogeneous Integration (DAHI) foundry for heterogeneous integration

Heterogeneous technology integration in accessible foundry

(first three-technology integration demonstrated in Jan 2015) Image courtesy of Northrop Grumman Aerospace Systems

Heterogeneous Integration of a diverse array of devices on a common Si CMOS platform

Goal: To establish a versatile platform of heterogeneous integration that enables pervasive impact on DoD systems

DAHI MPW0 CMOS + InP HBT + GaN HEMT demonstration

(3 technology integration demonstrated in Jan 2015) Image courtesy of Northrop Grumman Aerospace Systems

Successful integration of high performance III-V technologies with CMOS

DARPA DAHI MPW1: Excellent yield, successful initial tests

Northrop Grumman

GlobalFoundries

300mm diameter Si CMOS wafer (45nm node)

DAHI integration (Dec 2015): Si (45nm), InP (TF5 HBT), GaN (GaN20 HEMT)

Northrop Grumman

Successful testing identified optimal S/H circuit for ADC (>65dB SFDR @ 2GHz)

Integration approach - disaggregation

- Obfuscation Disaggregation of circuit into multiple chiplets conceals total circuit design/performance – circuit design is compartmentalized by technology
- Anti-tamper Tampering with individual chiplets complicated by lack of knowledge of overall circuit
- Minimizes semiconductor process change

Too much of a good thing is wonderful...

DAHI process extensions

- 1. Silicon Carbide Interposer
 - a. Better thermal conductivity
 - b. Better thermal expansion mismatch
 - c. Design/process studies underway
 - d. Pathfinder lots in process

BAE SiC Interposer #5 11.5 x 11.5 mm

- 2. Chiplet Stacking
 - a. Process demonstrations, design rule development underway
 - b. RF transition modeling in process

- 3. COTS CMOS Tile Processing
 - a. Developing handling tools and preparation processes

Images courtesy of Northrop Grumman

Integration: Enabling IP and chiplet re-use

DAHI-enabled integration technology plus IP re-use ecosystem to speed the design cycle and reduce the access cost

Common Heterogeneous integration and IP reuse Strategies program

CHIPS will develop the **design tools and integration standards** required to demonstrate **modular electronic systems** that can leverage **the best of DoD and commercial** designs and technology.

Today – Monolithic

Courtesy: Intel

Tomorrow – Modular

CHIPS enables rapid integration of functional blocks at the chiplet level

CHIPS impact on DoD electronics

	Today: PCB	Today: Monolithic	Tomorrow: CHIPS	
Cost (NRE)	\$0.1's M	\$5-10 M	~\$2 M	
Schedule	2 months	21 months	7 months	
Modularity	Board-level	No	Die-level	
IP Availability	COTS universe (packaged ICs)	Process node and vendor constrained	COTS and DoD pre- verified chiplets	
Performance	Low	High	High	
Heterogeneous Integration	Yes, within COTS universe	No	Yes	

CHIPS is projected to reduce IC design to one-third cost and time

CHIPS metrics (preliminary)

Design Level

Parameter	Value
IP reuse (%)	> 50% public ¹ IP blocks
Modular design (%)	> 80% reused ² IP
Access to IP	> 3 sources ³ of IP
Heterogeneous integration	> 3 technologies ⁴

Digital Interfaces

Parameter	Value
Data rate (scalable) 5	10 Gbps
Energy efficiency ⁶	< 5 pJ/bit
Latency 6	? 5 nsec

Analog Interfaces

Parameter	Value
Insertion loss	
(across full	< 1 dB
bandwidth)	
Dandwidth	? 50
Bandwidth	GHz

¹ Public IP is defined as IP blocks available through commercial vendors or available to DoD community.

² Reuse is defined as existing or previously designed IP that is re-implemented into the current system.

³ For RFI purposes, any business unit would be considered a single source of IP.

⁴ Various Silicon process nodes, RF passive, or compound semiconductor devices.

⁵ Minimum bus/lane data rate, capable of scaling to higher data rates.

⁶ Performance relating to transferring data between chiplets.

DARPA CHIPS end state vs. conventional supply chain

_	IP Blocks	CAD tools	Architecture	Design	Verification	Fabrication	Pkg / Test	Systems
Commercial	ARM TSMC Cadence Imagination	Cadence Mentor Graphics Synopsys	Google Apple Microsoft Samsung	Qualcomm Broadcom Apple TI Marvell	Qualcomm Broadcom Apple TI Marvell	TSMC SMIC GlobalFoun. Intel Samsung	TSMC ASE Group Amkor	Google Apple Microsoft Samsung
DoD	ARM Global Foundries.	Cadence Mentor Graphics Synopsys	Raytheon Northrop Lockheed Boeing BAE	Raytheon Northrop Lockheed Boeing BAE	Raytheon Northrop Lockheed Boeing BAE	Northrop Towerjazz HRL Global Foundries	Raytheon Northrop Lockheed Boeing BAE	Raytheon Northrop Lockheed Boeing BAE
CHIPS	ARM TSMC Cadence Imagination Raytheon Northrop Lockheed	Cadence Mentor Graphics Synopsys	Raytheon Northrop Lockheed Boeing BAE		CHIPS	Artist's concept	Northrop Novati US OSAT	Raytheon Northrop Lockheed Boeing BAE
	Boeing BAE		Design specs	Chiplet	es 🚺			
				⇒	TSMC Intel Global Foundries	Northrop Raytheon HRL	Jariet ? Intrinsix Flexlogix	Mouser Digi-Key
L	Trusted sources for critical components Commercial Defense Emerging Distributor							

DISTRIBUTION A. Approved for public release: distribution unlimited.

77

But there's more to DAHI than just the foundry...

DAHI alternate flow: wafer-scale bonding

Si CMOS Wafer TSV

Integration Complexity

High-Speed Digital Low-Noise mm-wave power

Microwave power Survivability

CS-STACK TECHNOLOGY

Images courtesy of Teledyne

Comparison to chiplet-based approach:

- ~10x reduced pitch → more interconnects per unit area (<2µm pitch,
 >10⁸/cm² densities have been realized)
- Requires similar area sizes for GaN, InP, and CMOS
- Technology is significantly less mature than chiplet-based approach

DAHI alternate flow: Wafer bonding of InP and Si CMOS (Teledyne/Tezzaron)

130 nm Si CMOS wafer

Cu/SiO₂ wafer bond interface

250 nm InP HBT wafer

Fig. 5. Extrapolated f_t and f_{max} of $0.25 \text{x} 4 \mu \text{m}^2$ HBT before and after integration ($V_{CE} = 1.8V$)

Fig. 6. Heterogeneous interconnection via chain resistance versus chain length.

Concept: trusted fabrication through 3D ICs

Exploring trust through combination of untrusted processes

Future of heterogeneous integration

Access and trust through disaggregation

