Cloud-Based Deployment and
Distributed Execution of Models

Rob Kewley, USMA

Future ERS . ; Explore Fit Visualize
Techs SYSML - Simulations Lo Analyze Metamodels Tradespace

- fre Design of =

Experiments

1 5 ronal Physical

w.w- Domain

Magic
Happens
Here

® Chain of tools for using M&S to develop system of systems
architecture

® How to we connect the system design properties to the
simulation inputs?

®
(1]
~+
v
=
=]
~+
O
®
o
o
=
3
@
=
~+
Q
-
£
(2]
—
®
3
[T2]
m
=)
o
=
o®
@
=
=]
oo

Connect Systems Architecture to Executable Model
Current Approaches

< | pousa| » Run
(Cesuse]

1« Reset

Dlayi]

Instantiation
Process

Defie LVE . v
1 Lovconmenat = —— e
eyt

Ferform - i Layeis Agenl Layers
) .
Anaiyiss _¢

Deweiep LVC
Irvronment

“ON DEMAND™ ~ * & ASPIBNDS
Enterprise
Repositary

——

Aug0201)

1250570 h
Instantiations

®
(1]
~+
v
=
=]
~+
O
®
o
o
=
3
@
=
~+
Q
-
£
(2]
—
®
3
[T2]
m
=)
o
=
o®
@
=
=]
oo

uswueda(julod 1SOM

~+
Q
-
4
(2]
—
®
3
[T2]
m
=)
o

Suusau

Combat XXI

...HLA/DIS integration does not scale....

5 different information exchange protocols
4 different terrain databases

Runs only in real time

SuueauISug swasAs Jo Juawnedaq Julod IS9M

Complex scenario initialization must be manually coordinated
across federates

Scenario execution is manual and error-prone
Data collection complex and causality can be impossible

Changing the scenario is a months-long proposition

HLA Approach

OneSAF

We need
these
models

N

Dismount Dismount

Vehicles Movement Soldier

SuueauISug swasAs Jo Juawnedaq Julod IS9M

Simulations
have baggage

OneSAF

MSDL

:H Real ! : Inltlaléatlon
'\ Time
Vehicles }

{H ! :HOutpuﬁ
| Scenario | rreets

: E | Initiali;ation

Dismount
Movement Soldier

Dismount

stLa1SAS Jo Juawiiedaq Jujod 1SOM

SuueauISt

HLA Approach

OneSAF IWARS

SuueauISug swasAs Jo Juawnedaq Julod IS9M

Open _ Outpu
MSDL :!‘ AAR ! :'EiFligh ! :HScena}lo :'}Anal EL
Real InitialiZation ” Real ‘ InitialiZation

| Time 't Time |

Vehicles } UAV Dismount Dlsmqunt

Movement Soldier

Distributed Modeling Framework €2

Bring your models a “pure” state transition
functions. Leave the baggage at home.

SuueauISug swasAs Jo Juawnedaq Julod IS9M

Federate models, not simulations
® Summer vacation at AMSAA

Loosely managed distributed architecture
Models are services via an interface (BOM)
Communicate via messaging (Actor Model)
Compose models in an interface (...like ProModel)
Systems model (SysML) drives model parameters
Distributed and parallel execution engine (DEVS-Akka)
Support with design and analysis of experiments

Take advantage of latest advances

@ Enterprise technologies
& Discrete Event Systems Specification (DEVS) models
® Actor model of computation

Proof of principle implementation

Target implementation for small UAS

SuueauISug swasAs Jo Juawnedaq Julod IS9M

Web Based Modeling and
Simulation for Analysis

Develop capability to deploy Army models and simulations
to distributed users via web a cloud technologies.

AMSAA

v disEcon) ARL
Objectives

Current Business Model Proposed Business Model

Deploy as software Deploy as web services

Run distributed by many
users

Accessed locally by a few
users

Data integrated and
updated

Data deployed separately

Cross-platform integration
of models in different
languages

Single programming
language

Technical Approach

Web
Interface

Simulation
Interface

Movement A Tauri?;ﬁ:on Communications
Model cq Model
\ - Model

Models as services — connected to data

Deliverables

* AMSAA models deployed on classified network as

services with web and simulation interfaces
* ACQUIRE-TTPM-TAS
* Direct Fire Accuracy
* Dismounted Vulnerability
* Dismounted Mobility
* Hand Grenade Accuracy

* Proof of principle web-based simulation
integrating these models

Acquire Service

Home Configuration

Current Configuration

Aggregate
Time
Time
Time
Scene
Scene
Scene
Scene
Weather
Weather
Weather
Weather
Weather

Weather

Messages

Attribute
timeOfDay
season
hourOfDay
clutter
background
lightLevel
region
weatherCondition
massExtinctionCoefficient
attenuationCoefficient
obscurantConcentrationLength
tPath

meteorologicalVisibilityRange

Acquire Service

Setting

DAY
SUMMER
1300
MEDIUM
VEGETATION
1

URBAN

15

0.326

12

Service Control

Startea | Running

I

Verbose Output:)

Current
Configuration

Turn Debugging
On/Off

Play/Pause Service

Start/Stop

Service

Tl Clear

Acquire Test Client

Acquire Test Client

Message Response
Observer Observer: M1AZ_DVO
Target: RED1
Name
Acquisition Level: DETECTION
M1A2_DVO

Correct ID: false

TEFOV: 3.7668386438011496

Type

GUNNER v
Required =

e Statistics
TFOV uRand1

0.2677434531506151 Request sent at: May 27, 2015 at 1:52:10 PM EDT
Real Respanse received at: May 27, 2015 at 1:52:10 PM EDT
TFOV uRand2

0.34376624622362224

Elapsed Time: 0.0155

Real
Sensor
Target

Draw

ARL Simulation and Training

%3

. Developers and
Systems Engineer Integration Engineers

— N

Workflow System

Hardware and
Network Engineers

SuueauISug swasAs Jo Juawnedaq Julod IS9M

System Design
Description
(SDD)

Deploy Asset

EASE Interview
Management

\ SE Bridge l

Software l Hardware

Enterprise Model Integration

Design and Analysis of Experiments
Enterprise Architecture
Simulation Execution Engine

Enterprise Data and Services

Messaging System

®
(1]
~+
v
=
=]
~+
O
®
o
o
=
3
@
=
~+
Q
-
£
(2]
—
®
3
[T2]
m
=)
o
=
o®
@
=
=]
oo

Enterprise Data Model

Model A Model B Model C Model D

Technology Stack

Data Farming, HTCondor, Statistical Software

SysML Architecture

Akka Actors/Distributed DEVS Time Warp Engine
Layered Terrain Format/Terrain Services

Akka/ZeroMQ

®
(1]
~+
v
=
=]
~+
O
®
o
o
=
3
@
=
~+
Q
-
£
(2]
—
®
3
[T2]
m
=)
o
=
o®
@
=
=]
oo

XML, Google Protocol
Buffers

Target
Acquisition
Model

Communications Awareness
Model Model

Movement
Model

Executable Architecture for Systems Engineering
Distributed Modeling Framework (EASE-DMF)

EASE-DMF provides the tools for the
simulation analyst and engineer to

Sensor Properties

build scenarios, combine models, set
properties, and collect data in order to

Idier Properties

analyze system performance.

NSRDEC NVL
\
Soldier Models @J i

Scanning Time management

Movement
Weapon
Target Acquisition

Executable Architecture

Sensor Models Federation execution

Target Acquisition Data management

State management
Data collection

Design of Experiments
_ Simulation State

= Operational Scenario ~ .

= ' System-Model Mapping

— - st'_',::‘ »"\“.

Events

CERDEC

Network Models]
Propagation
Bandwidth

TARDEC ‘ :

Vehicle Models]

Movement
Survivability

CERDEC

Situation

Awareness Models
Sensor Fusion
COP Management

Systems-model mapping ||

Simulation Analyst
Engineer

Results

Scenario

Network Properties

Vehicle Properties

C2 Properties

Legend
Simulation Execution

Simulation Initialization

System models are functional,
discrete, and modular. They can
be added as needed to the
simulation and run in parallel. In
contrast to current federations, the
analyst combines many simple and
functional models of individual
systems, not entire simulations.

®
(1]
~+
v
=
=]
~+
O
®
o
o
=
3
@
=
~+
Q
-
£
(2]
—
®
3
[T2]
m
=)
o
=
o®
@
=
=]
oo

Useful Theories - Simulation

® Discrete Event Specification (DEVS)
® DEVS models are modular
® Composable hierarchies in coupled models
® Strong track record

®
(1]
~+
v
=
=]
~+
O
®
o
o
=
3
@
=
~+
Q
-
£
(2]
—
®
3
[T2]
m
=)
o
=
o®
@
=
=]
oo

Base Object Model (BOM)

® Adds semantics to the models

® Complete specification of data inputs and outputs
® Situates models in a chain or interactions

Parallel algorithms
® Optimistic time advance - Time Warp
® Supports distributed and cloud-based implementations

Useful Theories - Computer Science

® Functional programming
® Functions are composable
® Functions have no side effects
® Predictable behavior

® Actor model of computation

® Encapsulation of state

® Responds to messages by...
® Sending messages to other actors
® Changing state in a way that influences future messages
® Creating new actors

® Reactive programming
® Event driven

Responsive

®
(1]
~+
v
=
=]
~+
O
®
o
o
=
3
@
=
~+
Q
-
£
(2]
—
®
3
[T2]
m
=)
o
=
o®
@
=
=]
oo

Asynchronous
Loosely coupled messaging
Fault tolerant

&
&
&
&
&
&
&
®

Implementation of reactive actor model

Scala and Java versions

Each DEVS model is an Akka SimActor

Each actor runs on its own thread

Exchanges data only through messaging
Support for serialization and distributed actors
Ability to manage threads

Open source

http://akka.io

SuueauISug swasAs Jo Juawnedaq Julod IS9M

Location
Time

Properties]

Sensor Properties
Target Properties
Weather

Target
Location

Exposed Area

4 State:
Sensor
Orientation 1
& Location JJ

\ .
\

Slew Sensor
(internal State Transition)

Event Handler

\
[scnaoae |

e T

Target
Detection
Time

SuueauISug swasAs Jo Juawnedaq Julod IS9M

® As aclass in API

&
&

®

Use static class

Pass in initialization data at
instantiation

Use public static methods

® As a state transition function servic

@

®

®
®

Define message classes for
input/output

Map message classes to
messaging protocol such as:
® JSON

® Protocol Buffers

® XML

Expose through a service interface

Document everything thoroughly

Location
Time

— Location
Vehicle Type Time

public final class DeadReckon {

}

private static Velocity velocity;

public DeadReckon(VehicleType t) {
velocity = getVehicleVelocity(t);

}

public static Location hewLocation(Location I, int time) {
return new Location(l + velocity * time)

}

Vehicle
Velocity Data

SuueauISug swasAs Jo Juawnedaq Julod IS9M

As DEVSActor
® Akka or C++ Actor Framework (CAF)

® Pass in initialization data at

instantiation
- Coupled Actor

(Aircraft)

Terrain

® Define message interface

As a distributed actor

® Map message classes to messaging
protocol such as:

® JSON
® Protocol Buffers
& XML
® Akka or CAF remote actors
® Document everything thoroughly Location

Vehicle Type
As simulation Initial Location

® Compile tightly linked models in a :
coupled actor I . ..
® Compile models with heavy interaction BN "(HH.ME,M_.%) QQ
traffic in same JVM (Akka) or native New Route T
library (CAF) ‘W /
Control with execution engine -
Copy large interactive data sets such as

terrain to each process to save network Vehicle
traffic Terrain Data .
Velocity Data

Network

SuueauISug swasAs Jo Juawnedaq Julod IS9M

Movement

Movement

N\

Awareness

Sensor
AMSAA
Acquire

Radio
Network

J

Enemy Soldjer

Sensor
AMSAA
Acquire

Sensor
AMSAA
Acquire

Awareness

Terrain ‘
Services

®
(1]
~+
v
=
=]
~+
O
®
o
o
=
3
@
=
~+
Q
-
£
(2]
—
®
3
[T2]
m
=)
o
=
o®
@
=
=]
oo

=

Way wlm

®
(1]
~+
v
=
=]
~+
O
®
o
o
=
3
@
=
~+
Q
-
£
(2]
—
®
3
[T2]
m
=)
o
=
o®
@
=
=]
oo

© 2015'Google,
; o ;
Image l.‘and,"sal',_

uc [Package] UseCases [DRS Use Cases ==

.Y

Dom ai

Simulation Developm ent_

Map elem ents of
systems
architecture to

Simulation Analyst

Systems Engineer

/
/

/

models

Define
performance
measures

Construct
simulation

Verify sim ulation
model

Validate simulation
model

ralyst

SuueauISug swasAs Jo Juawnedaq Julod IS9M

PM UAS ARL STTC
USMA AMSAA
AMRDEC NSRDEC

Summary

New SUAS acquisition strategy requires PM UAS to
operate as lead systems integrator (LSI)

LSl role requires assessment of engineering trades

Develop a web-based integrated modeling and
simulation framework to assess engineering trades
for small unmanned aircraft systems

Technical Approach

Develop a series of discrete analysis models to
represent small UAS technical performance

. Target acquisition

. Communications propagation
. Situation awareness

. Power

. Flight dynamics

. Terrain

Wrap in web-based interface

Integrate in simulation framework using Discrete
Event Systems Specification (DEVS) and SysML

Deliverables

SysML architecture of proposed micro UAS
Scenario development and design of experiments

Simulation analysis of micro key UAS performance
parameters tradespace

Size, weight, and power

Fixed vs. Rotary wing

Noise

Sensor performance

Radio performance

Squad or platoon level mission performance metrics

®
(1]
~+
v
=
=]
~+
O
®
o
o
=
3
@
=
~+
Q
-
£
(2]
—
®
3
[T2]
m
=)
o
=
o®
@
=
=]
oo

Functions of a DEVSActor

Initialize with static properties

Local and global virtual time

An internal schedule of state transitions

A set of internal and external state transition functions

It may update its state, schedule and internal event, or generate a
message to other DEVSActors

Maintain record of internal state and drop as global time advances
List of events that may be replayed in the event of roll back
An ability to generate random variates needed by state transitions

A publish and subscribe mechanism that asks for a notification
message upon sepecific state transitions of other DEVSActors

®
(1]
~+
v
=
=]
~+
O
®
o
o
=
3
@
=
~+
Q
-
£
(2]
—
®
3
[T2]
m
=)
o
=
o®
@
=
=]
oo

1

M&S Composition
State Transition Functions

a

K function

Internal state
transition function

State

State
g transition =—> transition —>

function

l(Schedule\

\

\

| ~e—l oy

External state transition function

State
transition —>

function /

Functions are mathematically composable

State transitions that take place at same instant can be chained

into one state transition

Calls out to stateless utility functions such as coordinate

transformation

Rules for functions:
Must be stateless

May use initialization
data under closure

These are static
objects with only
static data and
methods

After initialization,
calling with same
data always gives
same answer

SuueauISug swasAs Jo Juawnedaq Julod IS9M

