

1

National Defense Industrial Association

Implementing Continuous Iterative Development and Acquisition

Executive Summary

NDIA Systems Engineering Division

in partnership with INCOSE and PSM

22-Apr-2019

Background

Defense Science Board (DSB) released a report in Feb-2018 containing seven recommendations regarding software design and acquisition. Section 868 of NDAA 2019 mandates implementation of these recommendations within 18 months.

The Defense Innovation Board (DIB) Software Acquisition and Practices (SWAP) study group has also provided many insightful and largely compatible recommendations.

NDIA, INCOSE and PSM support the DSB and DIB concepts and the opportunities they offer to DoD and the defense industry.

- NDIA offers the recommendations herein to ASD(A&S) and ASD(R&E) representing an "industry perspective" on path forward.
- NDIA appreciates the opportunity to partner with DoD on implementation.

DSB SW Task Force Recommendations

- **1.** <u>Software Factory</u> A key evaluation criteria in the source selection process should be efficacy of the offeror's software factory.
- 2. <u>Continuous Iterative Development</u> DoD and defense industrial base partners should adopt continuous iterative development best practices for software, including through sustainment.
- 3. <u>Risk Reduction and Metrics for New Programs</u> For all new programs, starting immediately, implement best practices in formal program acquisition strategies (multiple vendors and down-selects, modernized cost and schedule measures, status estimation framework)
- 4. <u>Current and Legacy Programs in Development, Production, and</u> <u>Sustainment</u> – for ongoing development programs, PMs/PEOs should plan transition to a software factory and continuous iterative development.
- 5. <u>Workforce</u> The U.S. Government does not have modern software development expertise in its program offices or the broader functional acquisition workforce. This requires Congressional engagement and significant investment immediately.
- 6. <u>Software is Immortal: Software Sustainment</u> RFPs should specify the basic elements of the software framework supporting the software factory... reflected in source selection criteria
- 7. <u>IV&V for Machine Learning</u> Machine learning is an increasingly important component of a broad range of defense systems, including autonomous systems, and will further complicate the challenges of software acquisition.

The NDIA working group developed consensus recommendations responding to each of the 7 DSB findings:

- Assumptions
- Picture of Success (End State)
- Current State
- Description
- Obstacles
- Path Forward

This briefing is an executive summary of those recommendations. Detailed report provided separately.

Framing Assumptions

Continuous iterative development (CID) methods have cross-functional implications. The scope includes not just SOFTWARE but also SYSTEMS ENGINEERING and supporting disciplines.

Software Factories include people, processes, and tools – not just a tool chain.

Funding and contracts must be aligned to support implementation and/or migration to SW factories with life cycle sustainment.

A collaborative approach to Intellectual Property (IP) across the entire acquisition life cycle will be developed that meets both Government and Supplier needs.

A business case can be made for the effective deployment and maintenance of integrated tool chains to build capability throughout the life of the system.

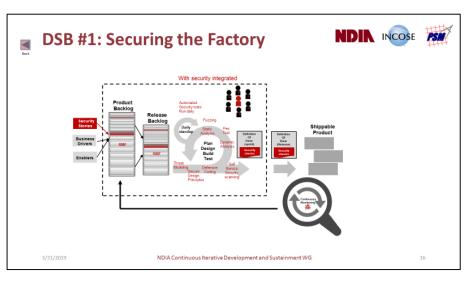
Traditional waterfall-based processes, tools, and measures are generally not well suited to CID.

A skilled SW-informed workforce cadre is available or can be developed across functions (e.g., software, acquisition, PMs, sustainment).

Cross-cutting assumptions. Refer to the separate detailed report with assumptions specific to each DSB recommendation area.

DSB #1: Software Factory

NDIA WG Recommendations



Picture of Success (end state)		
People	Qualified factory workforce	 Continuous learning (relentless improvement, pipeline feedback)
Process	 Integrated PMB Metrics Predictability 	 Digital Blueprint / Play Book Ontology, Nomenclature Secure Supply Chain Relentless Improvement
Tools	 Platform agnostic tool chain Adaptable to change Test automation at all levels 	 Model-based SW validation vs. architecture Red team / Blue team factory

Recommendations for Path Forward:

Initiative	Action Plan
Contract for software factory delivery	 Create a blueprint of contracts and language to enable software factory delivery Define approaches for different types of software (e.g., embedded, firmware, web); (life-critical, business-critical, low risk)
Fund value streams instead of projects	 Pilot funding a value stream for a single vendor award program Pilot funding value streams on multi-vendor award program
Incentivize Suppliers to build interoperable software factories that are continuously exercised	 Hold workshop with Industry to identify incentives Pilot options on some small short term modular contracts
Standardize software factory interfaces to facilitate data sharing	Common data architecture Define standards at the data layer for software factory to enable flexibility Define common nomenclature standards across vendors; use an existing framework such as the Scaled Agile Framework (SAFe)

Initiative	Action Plan
Publish blueprints and playbooks	Collaborate with Industry to obtain software factory blueprints and playbooks and publish for use across programs to increase success
Transparent integrated PMB	Publish blueprint of Integrated PMB (may differ across domains) Educate Government PMs on how to review PMB
Securing software factory	 Define a defense-in-depth approach to secure factory Identify a required cadence of Red Team / Blue team to ensure factory safe.
Standards-based supply chain	Define supply chain standards Define interoperability for supply chain with multiple factories
Define value stream for delivery and push varied vendor baselines through factory	Define value stream for delivery and enable multiple vendor baselines to deliver into the factory. Ensure interoperability

Security integrated into factory workflows (DevSecOps)

Initiative	Action Plan
Measure practices and process for results	 Document program practices and processes being used Measure success of programs by practice and environment to analyze which practices are demonstrating the best results based on customer criteria of value (not methodology, but individual practice)
DoD-run retrospectives for a sampling of programs	 Select a sampling of programs once a quarter and run a retrospective jointly between Industry and Government to identify root causes and improvements Publish best practices identified in retrospectives for all vendors
Open source	Research approach to instantiate Government-based open-sourced ways of working to leverage common modules across vendors and programs
Teams as a service (CID Cells)	 Research approach to leverage cross-functional teams as a service in work areas were there is higher availability of workforce.
IATO for infrastructure	Research opportunity to obtain IATO on Infrastructure of software Factory. bare metal / cloud / database (DB) are the longest lead-time items to approve If we could secure a common architecture, the application layer would be cheaper and faster to approve, reducing cycle time for capabilities

Click thumbnails to zoom

PMB: Performance Measurement Baseline

NDIA Continuous Iterative Development and Sustainment WG

DSB #2: Continuous Iterative Development (MVP)

MVP)	NDIR	INCOSE	P \$/
FOC Threshold (NVP)			Sustain

NDIA WG RECOMMENDATIONS
Picture of Success (end state)
Government / Contractor Interface

Government /	Contractor Interface	
Contracting	 New programs defined by solution intent (CV-1) Contracts defined by evolutionary viability products (MVP/NVP) 	
Funding	Contract funding structure supports seamless capability evolution	
Stakeholders	Active engagement in CID lifecycle	
Design	• Guided by MOSA	
IP	• Government access to source code with negotiated IP protections	
Program Execution		
People	 Multi-discipline agile execution includes aligned milestones Direct user/developer interaction informs design (product owner) 	
Process	 Early SE > SW sequencing, refactoring, tools, environments 	
Tools	• Test automation accelerates delivery (rapid release, deployment)	

CID: Continuous Iterative Development FOC: Final Operating Capability IOC: Initial Operating Capability IP: Intellectual Property MOSA: Modular Open Systems Architecture MVP: Minimally Viable Product NVP: Next Viable Product MVP Threshold

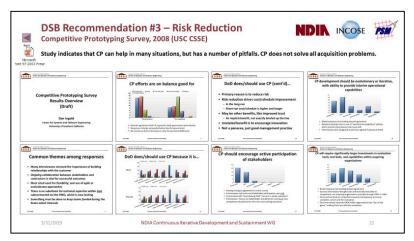
IOC Threshold (NVP)

Procurements based on iterative development of releases according to product capability thresholds

Recommendations for Path Forward:

ch implementation
implementation
esign approach to
niques emerge an
dard process for
vorkshop timing

Click thumbnails to zoom


NDIA Continuous Iterative Development and Sustainment WG

DSB #3a: Risk Reduction (Competitive Prototyping) NDIA WG Recommendations

Picture of Success (end state)		
Competition	 Business case: win-win partnership, common goals, acquisition/support strategy Objective downselect evaluation criteria (RFP L&M) and feedback Open architecture on critical components 	
Contracts	 IP agreement negotiated, sustained across the life cycle Funding and contracts aligned to support factory migration 	
Metrics	 Continuous improvement, SMART measures against objectives Risk-based decision making 	
Resources	• Funding, staffing, tools, environments to support multiple teams	

Recommendations for Path Forward:

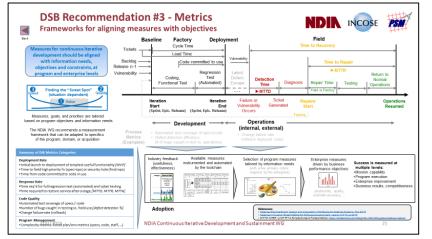
Initiative	Action Plan
Acquisition strategy	Acquisition strategies that provide a fair opportunity to compete, retain competition throughout the lifecycle for critical components to enable rapid evolution of the product.
Competitive prototyping	 Review analyses/reports from prior DoD competitive prototyping initiatives, and integrate lessons learned into action plan for DSB recommendations. Competitive prototyping risk reduction strategy should account for both functional and non-functional requirements.
Cultural shift	Migrate from subjective qualitative assessment to objective quantitative assessment of risk that support business decisions
Resources	DoD investment to acquire, deploy, integrate, and maintain evaluation tools and test beds
Workforce development	Recommend DoD initiate a development plan to provide workforce with skills and knowledge needed to plan, perform and execute the risk reduction strategies during competitive prototyping.

INCOSE

Competitive prototyping can help in many situations, but does not solve all acquisition problems.

Initiative	Action Plan
Program measurements	Define a minimum core set of metrics and ownership for measures needed to do the job at the Program, Functional, and Integrated Product Team (IPT) levels Develop and track metrics to control factory processes, measure against goals and objectives, assess/measure risk, and make decisions Enable real-time insight into measures and program status Ensure measures provide a comprehensive view of risk reduction strategy, including: functional and non-functional requirements; reliability, security, Develop consensus Government/Industry measurement framework and common measures applied across defense software acquisition programs.
P strategy	Develop contracting approaches that protect Supplier IP while providing the Government access to source code for analysis, deployment, support, and evolution. Sustain IP required for maintenance of the following: Renewable capital – patents, license, IP, Human capital – People, skills, experience, surge/slack Structural capital – data bases, tools, processes, test scripts, Relationships, Relationships,

Click thumbnails to zoom


22-Apr-2019

NDIA Continuous Iterative Development and Sustainment WG

DSB #3b: Measures for CID NDIA WG Recommendations

Picture of Success (end state)		
Consensus	 Objectives first - measures aligned and tailored from information	
frameworks	needs, goals and constraints, at program and enterprise levels	
Modernized	 Migration toward consensus alternatives to traditional waterfall	
measures	and phase-based SW measures (LOC, EVM, milestones,) Derived from SW factory processes, automated by toolchain Basis for measuring cost and schedule vs. plan	
History-	 Repositories collect performance-based measures (e.g., WBS,	
based	staff, cost, productivity) supporting future comparisons, basis of	
estimates	estimates, proposals, and program monitoring	

NDIR INCOSE PSIN

Measures for CID should be aligned with information needs and constraints, at program and enterprise levels

Recommendations for Path Forward:

DSB #3b: Metrics Path Forward	NDIN INCOSE		
Initiative	Action Plan		
Software measurement framework for CID	 Validate measurement framework (objectives, categories, measures) with Government and industry stakeholders (e.g., NDIA, INCOSE, PSM, SERC) Finalize initial consensus measures for software CID Pilot and validate measures/analysis on selected CID /DevSecOps programs. Develop contracting language requiring measurement set for future programs 		
WBS-based estimating of historical comparables for staff, cost, productivity	Recommend DoD expand WBS-based approach and historical DB measures to additional programs but at program level and <u>not specific to continuous</u> <u>software initiatives</u> (doubtful consistent data yet exists). Engage Government stakeholders on historical data estimating initiatives Partner with independent cost estimate (ICE) groups to migrate away from SLOC-based methods (CAPE, PARCA, ICE,); establish partnerships with industry for new methods (DSB #3)		
Reach consensus on cost and schedule measures vs. plan for software CID	Consider alternatives to EVM for managing performance vs. plan. Review EVM agile studies, publications, and guidance. Hold workshops with Industry and Government to define framework and measures. Recommend consensus approach for DoD software acquisition		
3/31/2019			

Click thumbnails to zoom

CID: Continuous Iterative Development EVMS: Earned Value Management System LOC: Lines of Code WBS: Work Breakdown Structure

DSB #4: Transition for Current and Legacy Programs NDIA WG Recommendations

Picture of Success (end state)					
People	Skill assessment for gap analysis	 Skilled capable workforce for transition on legacy programs 			
Process	 Business case for transition Playbooks and Blue Prints for legacy code transition Assessment of supply chain and SW pedigree (FOSS, COTS, GOTS) 	 Risk adjusted product backlog Strategies for incrementally building up test automation 			
Tools	• Tools to generate legacy 'as- built' documentation and models for legacy code base				

COTS: Commercial Off the Shelf FOSS: Free Open Source Software GOTS: Government Off the Shelf

6 Box 6: Example of Legacy Program Moving to Iterative Development: Tomahawk

Tomahawk is currently executing a streamlined, hybrid-Agile approach, with good results. The development approach for Tomahawk add-on, however, is still Waterfall. The program is conducting two-week long sprints over a defined period of time (i.e., the Waterfall spiral time) with the goal of discovering defects earlier, not necessarily shortening the time to completion. The benefit of this process is that shorter sprints allow for periodic deliveries for early integration and testing, as well as cyber scans. This approach will be implemented in full in the next baseline (*Tactical Tomahawk Weapons Control System v5.6.1*).

Defense Science Board, Design and Acquisition of Software for Defense Systems, Feb 2018

See also: Defense Innovation Board SWAP Study Report: <u>Supplementary Documents, Appendix B.6</u> <u>Sustainment / Modernization Subgroup Report</u>

Recommendations for Path Forward:

itiative	Action Plan	
ategories of legacy software rograms.	 Collaborate with industry building program categorization table for varied types of software and products being built Define common list of program readiness attributes Define metrics for how to measure transition success Develop common risk categories to evaluate Prototype process for iteratively and incrementally transitioning programs 	
appril enam pearBree	Investigate methods for evaluating software pedigree Prototype process and tools to evaluate supply chain pedigree Validate pedigree on FOSS/COTS/GOTS/Supplier components	
	Collaborate with Industry to build repository of blueprints , playbooks, and strategies for different types of programs.	
Visualization tools for varied code bases.	I Investigate Visualization tools for different types of code bases	
Auto generate "As-Built" and Models to evaluate system and develop transition plans	 Investigate standardized set of tools to auto-generate models and "As-Built" of the varied legacy systems Define a prioritization strategy for migrating program components to the software factory 	

NDIA Continuous Iterative Development and Sustainment WG

Click thumbnails to zoom

DSB #5: Workforce NDIA WG Recommendations

DAU curriculum for DevSecOps

and modern SW-centric systems

Community of practice platforms

Collaborative government /

Trained experienced industry

partners and supply chain

Increased hiring, retention,

training for acquisition experts

Recruiting pipeline for SW experts

industry partnerships

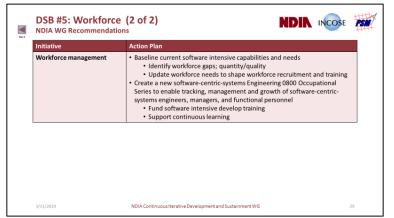
Picture of Success (end state)

Education

and Training

Stakeholder

Engagement


Staffing

Recommendations for Path Forward:

Click thumbnails to zoom

CDRL: Contract Data Requirements List	
CID: Continuous Iterative Development	
DALL: Defense Acquisition University	

AU: Defense Acquisition University **IPT: Integrated Product Team** PM: Program Manager PMO: Program Management Office

22-Apr-2019

NDIA Continuous Iterative Development and Sustainment WG NDIA Continuous Iterative Development and Sustainment WG

Training across career fields

Aligned with current/future

Consensus measurement

coaches across services

Action Plar

techniques

framework

DSB #5: Workforce (1 of 2)

NDIA WG Recommendations

Aodern software-intensive

Informed PMs and software

systems engineering

competency mode

SMEs Training

(PM, sustainment, acquisition)

development and recruiting needs

Multi-discipline CID support teams

Dedicated workforce funding and

PMO IPTs for modern SW practices

DAU/INCOSE/NDIA/ISO collaboration to add software-centric systems

Create ability to ID/code software-intensive-systems engineering in current/future software-centric systems skillsets

Engineering, Software, Financial Management, Cost Estimating, ...) Develop a consensus government/industry measurement framework and common measures applied across defense software acquisition programs Supply chain integration - Deploy supply chain pedigree evaluation tools and

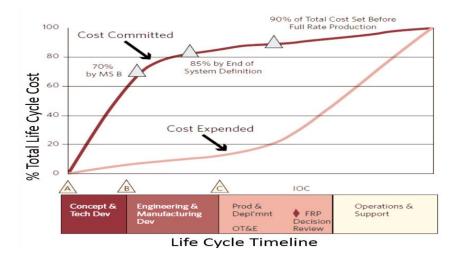
 Develop blueprints and playbooks for low risk transition Develop RFP guide for acquiring and transitioning to software factories

Development and deploy training at Defense Acquisition University on

iterative software development for all acquisition communities (PM, System

engineering roles and proficiencies to INCOSE SE competency model and

identify / develop workforce development content to improve proficiency


NDIN INCOSE

(CDRLs, events, milestones)

DSB #6: Sustainment (Software Is Immortal) NDIA WG Recommendations

Picture of Success (end state)				
Resources	 Availability and support of a trained proficient workforce Organic DoD software infrastructure, incentives, funding Collaborative IP strategy throughout the life cycle, using a "work shared sustainment" approach 			
Contracting Language	 Contracts specify elements of framework supporting SW factory Policies and guidance validated by workshops, pilots 			
Sustainment Ecosystems	 Understanding of current and future organizational ecosystems to ensure effective transfer of SW factories 			

Recommendations for Path Forward:

contains the basic elements of the • Genera					
software factory • Develo	ts of the • Generation and socialization of proposed contracting language				
current and future sustainment organizational ecosystems to ensure• Generational • Condu					

Click thumbnails to zoom

IV&V: Independent Verification & Validation

ML: Machine Learning

T&E: Test and Evaluation

Picture of Success (end state)

NDIA Continuous Iterative Development and Sustainment WG

Deploy a risk-based framework for managing ML risk in the same way that cyber

For the IV&V needs associated with ML in the system, use the mitigation of associated risks as a core part of the test and evaluation process Pilot R&D programs focused on approaches such as:

Formal methods and other approaches to prove correctness of ML models Enhancing trust in ML systems (see DARPA Explainable AI (XAI)) Standardize approaches to evaluating ML risk in the system, and develop playbook

of, CONOPS, architectural frameworks, and design patterns to mitigate these types

The risks associated with ML in a system depends on how that ML model impacts

We can manage risk levels through CONOPS and system architecture decisions

Data quality techniques to assess if training data sufficiently represent real-world

NDIA Continuous Iterative Development and Sustainment WG

overall system behavior

DSB #7: IV&V for Machine Learning (1 of 2)

Action Plan

risk is managed

distributions

of risk

Run Time Assurance (RTA) approaches

NDIA WG Recommendations

nitiative

framework

Research and experimentation programs

mitigate risks

architecture

Adopt a risk-based

should place a primary

focus on approaches to

Address ML risks/concerns

within CONOPS and

Click thumbnails to zoom

Consensus ML IV&V Framework	 Model-based inference engine considering full system context Risk-based methodology supporting T&E needs, linked to ML model failures early in system development process Mitigation throughout system design, development, sustainment
Open Data Sets	 High data quality, quantity, availability, and traceability Data repository accessible to government and industry Governance model for availability, level playing field, innovation New repository data continuously collected and published
Perpetual Updates	 Continuous ML model updates – evolution at speed of relevance Continuous V&V methods sensing changes from models, environment Performance/accuracy aligned with changing environment, threats

DSB #7: IV&V for Machine Learning NDIA WG Recommendations



T&E is a full lifecycle activity

focused on mitigating risk of

NDIN INCOSE PSM

failing to meet operational needs

Perpetual Upgrades

Recommendations for Path Forward:

Initiative	Action Plan
Ensure data availability and traceability across industry	Establish a data exchange that is not just a simple repository/dumping ground for data Instead espousing a governance model and necessary security controls DIB: "All data generated by DoD systems - in development and deployment - should be stored, mined, and made available for machine learning (ML)" To allow for greater innovation, make all this data available to industry via a secure data repository/exchange Include requirements for maintaining history, provenance and pedigree of data sets and ML models, and maintain data/model traceability Continuous V&V methods tied to sensing of changes from models & environment
Software factory considerations for ML systems	Ensure that evaluation criteria for a "Software Factory" considers the special needs of ML systems: • Evaluation criteria for Software Factories must consider the special needs of development and deployment for ML (models need to be rapidly re-trained, re- tested, re-deployed) Software factory considerations include: abundant storage for training/validation data, ample compute (e.g., Graphics Processing Units (GPUs), Tensor Processing Units (TPUs) to support training runs, etc.

12

The NDIA WG provides an industry perspective on picture of success, current state, obstacles and path forward for each DSB recommendation

DSB Recommendation	NDIA '	NDIA "Path Forward" recommendations			
#1 – Software Factory	14	Contracting, funding, incentives, methods, security, supply chain, and measures			
#2 – Continuous Iterative Development	3	Pilots and continuous improvement			
#3 – Risk Reduction & 10 Acquisition strategy, competitive prototyping, culture, workforce, II Metrics 10 Acquisition strategy, competitive prototyping, culture, workforce, II		Acquisition strategy, competitive prototyping, culture, workforce, IP, and measures			
#4 – Legacy Systems	5	Assessments, supply chain, methods, tools, and modeling			
#5 – Workforce Development	3	Competency models, workforce assessment, workforce management, and training			
#6 – Sustainment	2	Contracting and industry-government transfer of sustainment responsibilities			
#7 – Machine Learning 5 Risk, research, CONOPs, ML data, and Software Factory interactions		Risk, research, CONOPs, ML data, and Software Factory interactions			

Details of each topic and recommendation are provided in the separate report.

Acknowledgments

The NDIA Systems Engineering Division and its partners, INCOSE and PSM, appreciate the opportunity to provide an industry perspective for advancing the use of iterative methods in defense software acquisition.

The defense industrial base embraces the opportunities offered by the DSB and DIB recommendations and looks forward to supporting the Department of Defense with implementation.

Joseph Elm	L3 Technologies	Firas Glaiel	Raytheon	Virginia Perkins	MDA
Geoff Draper	Harris	Lemonte Green	MDA	Mike Phillips	SEI
James Belford	USAF STSC	Brian Hann	SAIC	Geoff Pierce	NRO
Dawn Beyer	Lockheed Martin	Stephen Henry	DAU	Marilyn Pineda	Lockheed Martin
Barry Boehm	USC	Paul Janusz	US Army RDEC	Garry Roedler	Lockheed Martin
Sean Brady	DAU	Suzette Johnson	Northrop Grumman	Heather Romero	Raytheon
Kevin Chapman	Harris	Cheryl Jones	US Army CCDC Armaments	Gene Rosenbluth	Northrop Grumman
Yann Chazal	Renault	Geethesh Kukkala	SAIC	Larri Rosser	Raytheon
David Chesebrough	NDIA	Richard Kutter	USAF	Dan Strickland	MDA
Chris Collins	DAU	John MacCarthy	Univ. of Maryland	James Thompson	OUSD(R&E) retired
Mark Cornwell	OUSD(R&E)	Phyllis Marbach	INCOSE	Steve Verga	Harris
Truc DeSa	Lockheed Martin	Jason McDonald	Harris	Ketchiozo Wandji	NAVAIR
James Doswell	US Army ARDEC	Mike McLendon	SEI	Allison Weigel	Тогау
Rick Dove	Paradigm Shift	Jenna Meyers	HQDA ASA FM	Beth Wilson	retired
Jim Duffy	Raytheon	Jeffrey Mueller	DAU / USAF	Erik Wylie	MDA
Robert Epps	retired	Kenneth Nidiffer	SEI	Hasan Yasar	SEI/CERT
Mark Ginese	DAU	John Norton	Raytheon	Robin Yeman	Lockheed Martin

NDIA Continuous Iterative Development and Sustainment Working Group:

Supporting Content (Hidden Slides)

Excerpts of NDIA Recommendations by DSB Finding

(see separate briefing package for full details)